Pickup and Delivery Problem with Time Windows (PDPTW)

Problem

In the Pickup and Delivery Problem with Time Windows (PDPTW), a fleet of delivery vehicles with uniform capacity must collect and deliver items according to the customers’ demands and opening hours. The customers are paired: in each pair, one customer corresponds to a pickup point (with positive demand), and the other corresponds to a delivery point (with negative demand). Each customer must be served by exactly one vehicle. Furthermore, paired customers must be served by the same truck and each pickup must be treated before its associated delivery. The vehicles start and end their routes at a common depot and the load they carry must not exceed their capacity at any point in the tour. The objectives consist in minimizing the fleet size and the total traveled distance.

Principles learned

Data

The instances provided come from the Li & Lim benchmark. The format of the data files is as follows:

  • The first line gives the number of vehicles, the capacity, and the speed (not used)
  • From the second line, for each customer (starting with the depot):
    • The index of the customer
    • The x coordinate
    • The y coordinate
    • The demand
    • The earliest arrival
    • The latest arrival
    • The service time
    • The index of the corresponding pickup order (0 if the order is a delivery)
    • The index of the corresponding delivery order (0 if the order is a pickup)

Program

The Hexaly model for the Pickup and Delivery Problem with Time Windows (PDPTW) is an extension of the CVRPTW model. We refer the reader to this model for the routing and time-window aspects of the problem.

Paired customers must be visited by the same truck. Using the ‘find’ operator, we retrieve the two list variables containing the pickup point and delivery point of each pair respectively. We can then constrain these two lists to be the same. Furthermore, the goods must be picked up before they are delivered. Using the ‘indexOf’ operator, we ensure that the pickup point is placed before the delivery point in the list.

The load each truck carries varies along the tour: it increases upon pickups and then decreases upon deliveries. We compute the trucks’ load over time using a recursive array: the load after visiting a customer is equal to the load after visiting the previous customer plus the current customer’s demand (positive in case of a pickup, negative in case of a delivery). We then use a variadic ‘and’ operator to ensure the capacity is respected at any point in the tour.

Finally, the objectives are the same as for the CVRPTW: we minimize the total lateness, the number of trucks used, and the total traveled distance.

Execution
hexaly pdptw.hxm inFileName=instances/lc101.txt [hxTimeLimit=] [solFileName=]
use io;

/* Read instance data. The input files follow the "Li & Lim" format*/
function input() {
    usage = "Usage: hexaly pdptw.hxm "
            + "inFileName=inputFile [solFileName=outputFile] [hxTimeLimit=timeLimit]";

    if (inFileName == nil) throw usage;

    readInputPdptw();

    // Compute distance matrix
    computeDistanceMatrix();

    if (nbMaxTrucks != nil) {
        nbTrucks = nbMaxTrucks;
    }

}

/* Declare the optimization model */
function model() {
    customersSequences[k in 0...nbTrucks] <- list(nbCustomers);

    // All customers must be visited by exactly one truck
    constraint partition[k in 0...nbTrucks](customersSequences[k]);

    //Pickups and deliveries
    for[i in 0...nbCustomers : pickupIndex[i] == -1] {
        pickupListIndex <- find(customersSequences, i);
        deliveryListIndex <- find(customersSequences, deliveryIndex[i]);
        constraint pickupListIndex == deliveryListIndex;
        pickupList <- customersSequences[pickupListIndex];
        deliveryList <- customersSequences[deliveryListIndex];
        constraint indexOf(pickupList, i) < indexOf(deliveryList, deliveryIndex[i]);
    }

    for [k in 0...nbTrucks] {
        local sequence <- customersSequences[k];
        local c <- count(sequence);

        // A truck is used if it visits at least one customer
        truckUsed[k] <- c > 0;

        // The quantity needed in each route must not exceed the truck capacity
        // at any point in the sequence
        routeQuantity[k] <- array(0...c, (i, prev) => prev + demands[sequence[i]], 0);
        constraint and(0...c, i => routeQuantity[k][i] <= truckCapacity);

        endTime[k] <- array(0...c, (i, prev) => max(earliestStart[sequence[i]],
                i == 0 ? distanceDepot[sequence[0]] :
                prev + distanceMatrix[sequence[i - 1]][sequence[i]])
                + serviceTime[sequence[i]], 0);

        homeLateness[k] <- truckUsed[k] ?
               max(0, endTime[k][c - 1] + distanceDepot[sequence[c - 1]] - maxHorizon) :
               0;

        // Distance traveled by truck k
        routeDistances[k] <- sum(1...c,
                i => distanceMatrix[sequence[i - 1]][sequence[i]]) + (truckUsed[k] ?
                (distanceDepot[sequence[0]] + distanceDepot[sequence[c - 1]]) :
                0);

        lateness[k] <- homeLateness[k] + sum(0...c,
                i => max(0, endTime[k][i] - latestEnd[sequence[i]]));
    }

    // Total lateness, must be 0 for a solution to be valid
    totalLateness <- sum[k in 0...nbTrucks](lateness[k]);

    nbTrucksUsed <- sum[k in 0...nbTrucks](truckUsed[k]);

    // Total distance traveled
    totalDistance <- round(100 * sum[k in 0...nbTrucks](routeDistances[k])) / 100;


    minimize totalLateness;
    if (nbMaxTrucks == nil) minimize nbTrucksUsed;
    minimize totalDistance;
}

/* Parametrize the solver */
function param() {
    if (hxTimeLimit == nil) hxTimeLimit = 20;
}

/* Write the solution in a file with the following format :
 * - number of trucks used and total distance
 * - for each truck the customers visited (omitting the start/end at the depot) */
function output() {
    if (solFileName == nil) return;
    local outfile = io.openWrite(solFileName);

    outfile.println(nbTrucksUsed.value, " ", totalDistance.value);
    for [k in 0...nbTrucks] {
        if (truckUsed[k].value != 1) continue;
        for [customer in customersSequences[k].value]
            outfile.print(customer + 1, " ");
        outfile.println();
    }
}

function readInputPdptw() {
    local inFile = io.openRead(inFileName);

    // Truck related data
    nbTrucks = inFile.readInt();
    truckCapacity = inFile.readInt();
    speed = inFile.readInt(); // not used

    // Depot data
    local line = inFile.readln().split("	");
    depotIndex = line[0].toInt();
    depotX = line[1].toInt();
    depotY = line[2].toInt();
    maxHorizon = line[5].toInt();

    // Customers data
    i = 0;
    while (!inFile.eof()) {
        inLine = inFile.readln();
        line = inLine.split("	");
        if (count(line) == 0) break;
        if (count(line) != 9) throw "Wrong file format";
        customerIndex[i] = line[0].toInt();
        customerX[i] = line[1].toInt();
        customerY[i] = line[2].toInt();
        demands[i] = line[3].toInt();
        serviceTime[i] = line[6].toInt();
        earliestStart[i] = line[4].toInt();
        // in input files due date is meant as latest start time
        latestEnd[i] = line[5].toInt() + serviceTime[i];
        pickupIndex[i] = line[7].toInt() - 1;
        deliveryIndex[i] = line[8].toInt() - 1;
        i = i + 1;
    }
    nbCustomers = i;

    inFile.close();
}

function computeDistanceMatrix() {
    for [i in 0...nbCustomers] {
        distanceMatrix[i][i] = 0;
        for [j in i+1...nbCustomers] {
            local localDistance = computeDist(i, j);
            distanceMatrix[j][i] = localDistance;
            distanceMatrix[i][j] = localDistance;
        }
    }

    for [i in 0...nbCustomers] {
        local localDistance = computeDepotDist(i);
        distanceDepot[i] = localDistance;
    }
}

function computeDist(i, j) {
    local x1 = customerX[i];
    local x2 = customerX[j];
    local y1 = customerY[i];
    local y2 = customerY[j];
    return computeDistance(x1, x2, y1, y2);
}

function computeDepotDist(i) {
    local x1 = customerX[i];
    local xd = depotX;
    local y1 = customerY[i];
    local yd = depotY;
    return computeDistance(x1, xd, y1, yd);
}

function computeDistance(x1, x2, y1, y2) {
    return sqrt(pow((x1 - x2), 2) + pow((y1 - y2), 2));
}
Execution (Windows)
set PYTHONPATH=%HX_HOME%\bin\python
python pdptw.py instances\lc101.txt
Execution (Linux)
export PYTHONPATH=/opt/hexaly_13_0/bin/python
python pdptw.py instances/lc101.txt
import hexaly.optimizer
import sys
import math


def read_elem(filename):
    with open(filename) as f:
        return [str(elem) for elem in f.read().split()]


def main(instance_file, str_time_limit, sol_file):
    #
    # Read instance data
    #
    nb_customers, nb_trucks, truck_capacity, dist_matrix_data, dist_depot_data, \
        demands_data, service_time_data, earliest_start_data, latest_end_data, \
        pick_up_index, delivery_index, max_horizon = read_input_pdptw(instance_file)

    with hexaly.optimizer.HexalyOptimizer() as optimizer:
        #
        # Declare the optimization model
        #
        model = optimizer.model

        # Sequence of customers visited by each truck
        customers_sequences = [model.list(nb_customers) for k in range(nb_trucks)]

        # All customers must be visited by exactly one truck
        model.constraint(model.partition(customers_sequences))

        # /Create Hexaly arrays to be able to access them with "at" operators
        demands = model.array(demands_data)
        earliest = model.array(earliest_start_data)
        latest = model.array(latest_end_data)
        service_time = model.array(service_time_data)
        dist_matrix = model.array(dist_matrix_data)
        dist_depot = model.array(dist_depot_data)

        dist_routes = [None] * nb_trucks
        end_time = [None] * nb_trucks
        home_lateness = [None] * nb_trucks
        lateness = [None] * nb_trucks

        # A truck is used if it visits at least one customer
        trucks_used = [(model.count(customers_sequences[k]) > 0) for k in range(nb_trucks)]
        nb_trucks_used = model.sum(trucks_used)

        # Pickups and deliveries
        customers_sequences_array = model.array(customers_sequences)
        for i in range(nb_customers):
            if pick_up_index[i] == -1:
                pick_up_list_index = model.find(customers_sequences_array, i)
                delivery_list_index = model.find(customers_sequences_array, delivery_index[i])
                model.constraint(pick_up_list_index == delivery_list_index)
                pick_up_list = model.at(customers_sequences_array, pick_up_list_index)
                delivery_list = model.at(customers_sequences_array, delivery_list_index)
                model.constraint(model.index(pick_up_list, i) < model.index(delivery_list, delivery_index[i]))

        for k in range(nb_trucks):
            sequence = customers_sequences[k]
            c = model.count(sequence)

            # The quantity needed in each route must not exceed the truck capacity at any
            # point in the sequence
            demand_lambda = model.lambda_function(
                lambda i, prev: prev + demands[sequence[i]])
            route_quantity = model.array(model.range(0, c), demand_lambda, 0)

            quantity_lambda = model.lambda_function(
                lambda i: route_quantity[i] <= truck_capacity)
            model.constraint(model.and_(model.range(0, c), quantity_lambda))

            # Distance traveled by each truck
            dist_lambda = model.lambda_function(
                lambda i: model.at(dist_matrix, sequence[i - 1], sequence[i]))
            dist_routes[k] = model.sum(model.range(1, c), dist_lambda) \
                + model.iif(c > 0, dist_depot[sequence[0]] + dist_depot[sequence[c - 1]], 0)

            # End of each visit
            end_lambda = model.lambda_function(
                lambda i, prev:
                    model.max(
                        earliest[sequence[i]],
                        model.iif(
                            i == 0,
                            dist_depot[sequence[0]],
                            prev + model.at(dist_matrix, sequence[i - 1], sequence[i])))
                    + service_time[sequence[i]])

            end_time[k] = model.array(model.range(0, c), end_lambda, 0)

            # Arriving home after max_horizon
            home_lateness[k] = model.iif(
                trucks_used[k],
                model.max(
                    0,
                    end_time[k][c - 1] + dist_depot[sequence[c - 1]] - max_horizon),
                0)

            # Completing visit after latest_end
            late_selector = model.lambda_function(
                lambda i: model.max(0, end_time[k][i] - latest[sequence[i]]))
            lateness[k] = home_lateness[k] + model.sum(model.range(0, c), late_selector)

        # Total lateness (must be 0 for the solution to be valid)
        total_lateness = model.sum(lateness)

        # Total distance traveled
        total_distance = model.div(model.round(100 * model.sum(dist_routes)), 100)

        # Objective: minimize the number of trucks used, then minimize the distance traveled
        model.minimize(total_lateness)
        model.minimize(nb_trucks_used)
        model.minimize(total_distance)

        model.close()

        # Parameterize the optimizer
        optimizer.param.time_limit = int(str_time_limit)

        optimizer.solve()

        #
        # Write the solution in a file with the following format:
        #  - number of trucks used and total distance
        #  - for each truck the customers visited (omitting the start/end at the depot)
        #
        if sol_file is not None:
            with open(sol_file, 'w') as f:
                f.write("%d %.2f\n" % (nb_trucks_used.value, total_distance.value))
                for k in range(nb_trucks):
                    if trucks_used[k].value != 1:
                        continue
                    # Values in sequence are in 0...nbCustomers. +2 is to put it back in
                    # 2...nbCustomers+2 as in the data files (1 being the depot)
                    for customer in customers_sequences[k].value:
                        f.write("%d " % (customer + 1))
                    f.write("\n")


# The input files follow the "Li & Lim" format
def read_input_pdptw(filename):
    file_it = iter(read_elem(filename))

    nb_trucks = int(next(file_it))
    truck_capacity = int(next(file_it))
    next(file_it)

    next(file_it)

    depot_x = int(next(file_it))
    depot_y = int(next(file_it))

    for i in range(2):
        next(file_it)

    max_horizon = int(next(file_it))

    for i in range(3):
        next(file_it)

    customers_x = []
    customers_y = []
    demands = []
    earliest_start = []
    latest_end = []
    service_time = []
    pick_up_index = []
    delivery_index = []

    while True:
        val = next(file_it, None)
        if val is None:
            break
        i = int(val) - 1
        customers_x.append(int(next(file_it)))
        customers_y.append(int(next(file_it)))
        demands.append(int(next(file_it)))
        ready = int(next(file_it))
        due = int(next(file_it))
        stime = int(next(file_it))
        pick = int(next(file_it))
        delivery = int(next(file_it))
        earliest_start.append(ready)
        # in input files due date is meant as latest start time
        latest_end.append(due + stime)
        service_time.append(stime)
        pick_up_index.append(pick - 1)
        delivery_index.append(delivery - 1)

    nb_customers = i + 1

    distance_matrix = compute_distance_matrix(customers_x, customers_y)
    distance_depots = compute_distance_depots(depot_x, depot_y, customers_x, customers_y)

    return nb_customers, nb_trucks, truck_capacity, distance_matrix, distance_depots, \
            demands, service_time, earliest_start, latest_end, pick_up_index, \
            delivery_index, max_horizon


# Compute the distance matrix
def compute_distance_matrix(customers_x, customers_y):
    nb_customers = len(customers_x)
    distance_matrix = [[None for i in range(nb_customers)] for j in range(nb_customers)]
    for i in range(nb_customers):
        distance_matrix[i][i] = 0
        for j in range(nb_customers):
            dist = compute_dist(customers_x[i], customers_x[j],
                                customers_y[i], customers_y[j])
            distance_matrix[i][j] = dist
            distance_matrix[j][i] = dist
    return distance_matrix


# Compute the distances to the depot
def compute_distance_depots(depot_x, depot_y, customers_x, customers_y):
    nb_customers = len(customers_x)
    distance_depots = [None] * nb_customers
    for i in range(nb_customers):
        dist = compute_dist(depot_x, customers_x[i], depot_y, customers_y[i])
        distance_depots[i] = dist
    return distance_depots


def compute_dist(xi, xj, yi, yj):
    return math.sqrt(math.pow(xi - xj, 2) + math.pow(yi - yj, 2))


if __name__ == '__main__':
    if len(sys.argv) < 2:
        print("Usage: python pdptw.py input_file [output_file] [time_limit]")
        sys.exit(1)

    instance_file = sys.argv[1]
    sol_file = sys.argv[2] if len(sys.argv) > 2 else None
    str_time_limit = sys.argv[3] if len(sys.argv) > 3 else "20"

    main(instance_file, str_time_limit, sol_file)
Compilation / Execution (Windows)
cl /EHsc pdptw.cpp -I%HX_HOME%\include /link %HX_HOME%\bin\hexaly130.lib
pdptw instances\lc101.txt
Compilation / Execution (Linux)
g++ pdptw.cpp -I/opt/hexaly_13_0/include -lhexaly130 -lpthread -o pdptw
./pdptw instances/lc101.txt
#include "optimizer/hexalyoptimizer.h"
#include <cmath>
#include <cstring>
#include <fstream>
#include <iostream>
#include <vector>

using namespace hexaly;
using namespace std;

class Pdptw {
public:
    // Hexaly Optimizer
    HexalyOptimizer optimizer;

    // Number of customers
    int nbCustomers;

    // Capacity of the trucks
    int truckCapacity;

    // Latest allowed arrival to depot
    int maxHorizon;

    // Demand for each customer
    vector<int> demandsData;

    // Earliest arrival for each customer
    vector<int> earliestStartData;

    // Latest departure from each customer
    vector<int> latestEndData;

    // Service time for each customer
    vector<int> serviceTimeData;

    // Index for pickup for each node
    vector<int> pickUpIndex;

    // Index for delivery for each node
    vector<int> deliveryIndex;

    // Distance matrix between customers
    vector<vector<double>> distMatrixData;

    // Distances between customers and depot
    vector<double> distDepotData;

    // Number of trucks
    int nbTrucks;

    // Decision variables
    vector<HxExpression> customersSequences;

    // Are the trucks actually used
    vector<HxExpression> trucksUsed;

    // Cumulated lateness in the solution (must be 0 for the solution to be valid)
    HxExpression totalLateness;

    // Number of trucks used in the solution
    HxExpression nbTrucksUsed;

    // Distance traveled by all the trucks
    HxExpression totalDistance;

    Pdptw() {}

    // Read instance data
    void readInstance(const string& fileName) { readInputPdptw(fileName); }

    void solve(int limit) {
        // Declare the optimization model
        HxModel model = optimizer.getModel();

        // Sequence of customers visited by each truck
        customersSequences.resize(nbTrucks);
        for (int k = 0; k < nbTrucks; ++k) {
            customersSequences[k] = model.listVar(nbCustomers);
        }

        // All customers must be visited by exactly one truck
        model.constraint(model.partition(customersSequences.begin(), customersSequences.end()));

        // Create Hexaly arrays to be able to access them with "at" operators
        HxExpression demands = model.array(demandsData.begin(), demandsData.end());
        HxExpression earliest = model.array(earliestStartData.begin(), earliestStartData.end());
        HxExpression latest = model.array(latestEndData.begin(), latestEndData.end());
        HxExpression serviceTime = model.array(serviceTimeData.begin(), serviceTimeData.end());
        HxExpression distMatrix = model.array();
        for (int n = 0; n < nbCustomers; ++n) {
            distMatrix.addOperand(model.array(distMatrixData[n].begin(), distMatrixData[n].end()));
        }
        HxExpression distDepot = model.array(distDepotData.begin(), distDepotData.end());

        trucksUsed.resize(nbTrucks);
        vector<HxExpression> distRoutes(nbTrucks), endTime(nbTrucks), homeLateness(nbTrucks), lateness(nbTrucks);

        // Pickups and deliveries
        HxExpression customersSequencesArray = model.array(customersSequences.begin(), customersSequences.end());
        for (int i = 0; i < nbCustomers; ++i) {
            if (pickUpIndex[i] == -1) {
                HxExpression pickUpListIndex = model.find(customersSequencesArray, i);
                HxExpression deliveryListIndex = model.find(customersSequencesArray, deliveryIndex[i]);
                model.constraint(pickUpListIndex == deliveryListIndex);
                HxExpression pickupList = model.at(customersSequencesArray, pickUpListIndex);
                HxExpression deliveryList = model.at(customersSequencesArray, deliveryListIndex);
                model.constraint(model.indexOf(pickupList, i) < model.indexOf(deliveryList, deliveryIndex[i]));
            }
        }

        for (int k = 0; k < nbTrucks; ++k) {
            HxExpression sequence = customersSequences[k];
            HxExpression c = model.count(sequence);

            // A truck is used if it visits at least one customer
            trucksUsed[k] = c > 0;

            // The quantity needed in each route must not exceed the truck capacity at any point in the sequence
            HxExpression demandLambda = model.createLambdaFunction(
                [&](HxExpression i, HxExpression prev) { return prev + demands[sequence[i]]; });
            HxExpression routeQuantity = model.array(model.range(0, c), demandLambda, 0);

            HxExpression quantityLambda =
                model.createLambdaFunction([&](HxExpression i) { return routeQuantity[i] <= truckCapacity; });
            model.constraint(model.and_(model.range(0, c), quantityLambda));

            // Distance traveled by truck k
            HxExpression distLambda = model.createLambdaFunction(
                [&](HxExpression i) { return model.at(distMatrix, sequence[i - 1], sequence[i]); });
            distRoutes[k] = model.sum(model.range(1, c), distLambda) +
                            model.iif(c > 0, distDepot[sequence[0]] + distDepot[sequence[c - 1]], 0);

            // End of each visit
            HxExpression endLambda = model.createLambdaFunction([&](HxExpression i, HxExpression prev) {
                return model.max(earliest[sequence[i]],
                                 model.iif(i == 0, distDepot[sequence[0]],
                                           prev + model.at(distMatrix, sequence[i - 1], sequence[i]))) +
                       serviceTime[sequence[i]];
            });

            endTime[k] = model.array(model.range(0, c), endLambda, 0);

            // Arriving home after max_horizon
            homeLateness[k] =
                model.iif(trucksUsed[k], model.max(0, endTime[k][c - 1] + distDepot[sequence[c - 1]] - maxHorizon), 0);

            // Completing visit after latest_end
            HxExpression lateLambda = model.createLambdaFunction(
                [&](HxExpression i) { return model.max(0, endTime[k][i] - latest[sequence[i]]); });
            lateness[k] = homeLateness[k] + model.sum(model.range(0, c), lateLambda);
        }

        // Total lateness
        totalLateness = model.sum(lateness.begin(), lateness.end());

        // Total number of trucks used
        nbTrucksUsed = model.sum(trucksUsed.begin(), trucksUsed.end());

        // Total distance traveled
        totalDistance = model.round(100 * model.sum(distRoutes.begin(), distRoutes.end())) / 100;

        // Objective: minimize the number of trucks used, then minimize the distance traveled
        model.minimize(totalLateness);
        model.minimize(nbTrucksUsed);
        model.minimize(totalDistance);

        model.close();

        // Parameterize the optimizer
        optimizer.getParam().setTimeLimit(limit);

        optimizer.solve();
    }

    /* Write the solution in a file with the following format:
     *  - number of trucks used and total distance
     *  - for each truck the customers visited (omitting the start/end at the depot) */
    void writeSolution(const string& fileName) {
        ofstream outfile;
        outfile.exceptions(ofstream::failbit | ofstream::badbit);
        outfile.open(fileName.c_str());

        outfile << nbTrucksUsed.getValue() << " " << totalDistance.getDoubleValue() << endl;
        for (int k = 0; k < nbTrucks; ++k) {
            if (trucksUsed[k].getValue() != 1)
                continue;
            // Values in sequence are in 0...nbCustomers. +2 is to put it back in 2...nbCustomers+2
            // as in the data files (1 being the depot)
            HxCollection customersCollection = customersSequences[k].getCollectionValue();
            for (int i = 0; i < customersCollection.count(); ++i) {
                outfile << customersCollection[i] + 1 << " ";
            }
            outfile << endl;
        }
    }

private:
    // The input files follow the "Li & Lim" format
    void readInputPdptw(const string& fileName) {
        ifstream infile(fileName.c_str());
        if (!infile.is_open()) {
            throw std::runtime_error("File cannot be opened.");
        }

        string str;
        long dump;
        int depotX, depotY;
        vector<int> customersX;
        vector<int> customersY;

        infile >> nbTrucks;
        infile >> truckCapacity;
        infile >> dump;
        infile >> dump;
        infile >> depotX;
        infile >> depotY;
        infile >> dump;
        infile >> dump;
        infile >> maxHorizon;
        infile >> dump;
        infile >> dump;
        infile >> dump;

        while (infile >> dump) {
            int cx, cy, demand, ready, due, service, pick, delivery;
            infile >> cx;
            infile >> cy;
            infile >> demand;
            infile >> ready;
            infile >> due;
            infile >> service;
            infile >> pick;
            infile >> delivery;

            customersX.push_back(cx);
            customersY.push_back(cy);
            demandsData.push_back(demand);
            earliestStartData.push_back(ready);
            latestEndData.push_back(due + service); // in input files due date is meant as latest start time
            serviceTimeData.push_back(service);
            pickUpIndex.push_back(pick - 1);
            deliveryIndex.push_back(delivery - 1);
        }

        nbCustomers = customersX.size(); 

        computeDistanceMatrix(depotX, depotY, customersX, customersY);

        infile.close();
    }

    // Compute the distance matrix
    void computeDistanceMatrix(int depotX, int depotY, const vector<int>& customersX, const vector<int>& customersY) {
        distMatrixData.resize(nbCustomers);
        for (int i = 0; i < nbCustomers; ++i) {
            distMatrixData[i].resize(nbCustomers);
        }
        for (int i = 0; i < nbCustomers; ++i) {
            distMatrixData[i][i] = 0;
            for (int j = i + 1; j < nbCustomers; ++j) {
                double distance = computeDist(customersX[i], customersX[j], customersY[i], customersY[j]);
                distMatrixData[i][j] = distance;
                distMatrixData[j][i] = distance;
            }
        }

        distDepotData.resize(nbCustomers);
        for (int i = 0; i < nbCustomers; ++i) {
            distDepotData[i] = computeDist(depotX, customersX[i], depotY, customersY[i]);
        }
    }

    double computeDist(int xi, int xj, int yi, int yj) {
        return sqrt(pow((double)xi - xj, 2) + pow((double)yi - yj, 2));
    }
};

int main(int argc, char** argv) {
    if (argc < 2) {
        cerr << "Usage: pdptw inputFile [outputFile] [timeLimit]" << endl;
        return 1;
    }

    const char* instanceFile = argv[1];
    const char* solFile = argc > 2 ? argv[2] : NULL;
    const char* strTimeLimit = argc > 3 ? argv[3] : "20";

    try {
        Pdptw model;
        model.readInstance(instanceFile);
        model.solve(atoi(strTimeLimit));
        if (solFile != NULL)
            model.writeSolution(solFile);
        return 0;
    } catch (const exception& e) {
        cerr << "An error occurred: " << e.what() << endl;
        return 1;
    }
}
Compilation / Execution (Windows)
copy %HX_HOME%\bin\Hexaly.NET.dll .
csc Pdptw.cs /reference:Hexaly.NET.dll
Pdptw instances\lc101.txt
using System;
using System.IO;
using System.Collections.Generic;
using Hexaly.Optimizer;

public class Pdptw : IDisposable
{
    // Hexaly Optimizer
    HexalyOptimizer optimizer;

    // Number of customers
    int nbCustomers;

    // Capacity of the trucks
    int truckCapacity;

    // Latest allowed arrival to depot
    int maxHorizon;

    // Demand for each customer
    List<int> demandsData;

    // Earliest arrival for each customer
    List<int> earliestStartData;

    // Latest departure from each customer
    List<int> latestEndData;

    // Service time for each customer
    List<int> serviceTimeData;

    // Index for pick up for each node
    List<int> pickUpIndex;

    // Index for delivery for each node
    List<int> deliveryIndex;

    // Distance matrix between customers
    double[][] distMatrixData;

    // Distances between customers and depot
    double[] distDepotData;

    // Number of trucks
    int nbTrucks;

    // Decision variables
    HxExpression[] customersSequences;

    // Are the trucks actually used
    HxExpression[] trucksUsed;

    // Distance traveled by each truck
    HxExpression[] distRoutes;

    // End time array for each truck
    HxExpression[] endTime;

    // Home lateness for each truck
    HxExpression[] homeLateness;

    // Cumulated Lateness for each truck
    HxExpression[] lateness;

    // Cumulated lateness in the solution (must be 0 for the solution to be valid)
    HxExpression totalLateness;

    // Number of trucks used in the solution
    HxExpression nbTrucksUsed;

    // Distance traveled by all the trucks
    HxExpression totalDistance;

    public Pdptw()
    {
        optimizer = new HexalyOptimizer();
    }

    /* Read instance data */
    void ReadInstance(string fileName)
    {
        ReadInputPdptw(fileName);
    }

    public void Dispose()
    {
        if (optimizer != null)
            optimizer.Dispose();
    }

    void Solve(int limit)
    {
        // Declare the optimization model
        HxModel model = optimizer.GetModel();

        trucksUsed = new HxExpression[nbTrucks];
        customersSequences = new HxExpression[nbTrucks];
        distRoutes = new HxExpression[nbTrucks];
        endTime = new HxExpression[nbTrucks];
        homeLateness = new HxExpression[nbTrucks];
        lateness = new HxExpression[nbTrucks];

        // Sequence of customers visited by each truck
        for (int k = 0; k < nbTrucks; ++k)
            customersSequences[k] = model.List(nbCustomers);

        // All customers must be visited by exactly one truck
        model.Constraint(model.Partition(customersSequences));

        // Create HexalyOptimizer arrays to be able to access them with "at" operators
        HxExpression demands = model.Array(demandsData);
        HxExpression earliest = model.Array(earliestStartData);
        HxExpression latest = model.Array(latestEndData);
        HxExpression serviceTime = model.Array(serviceTimeData);
        HxExpression distDepot = model.Array(distDepotData);
        HxExpression distMatrix = model.Array(distMatrixData);
        HxExpression customersSequencesArray = model.Array(customersSequences);

        for (int i = 0; i < nbCustomers; ++i)
        {
            if (pickUpIndex[i] == -1)
            {
                HxExpression pickUpListIndex = model.Find(customersSequencesArray, i);
                HxExpression deliveryListIndex = model.Find(customersSequencesArray, deliveryIndex[i]);
                model.Constraint(pickUpListIndex == deliveryListIndex);

                HxExpression pickUpList = customersSequencesArray[pickUpListIndex];
                HxExpression deliveryList = customersSequencesArray[deliveryListIndex];
                model.Constraint(
                    model.IndexOf(pickUpList, i) < model.IndexOf(deliveryList, deliveryIndex[i])
                );
            }
        }


        for (int k = 0; k < nbTrucks; ++k)
        {
            HxExpression sequence = customersSequences[k];
            HxExpression c = model.Count(sequence);

            // A truck is used if it visits at least one customer
            trucksUsed[k] = c > 0;

            // The quantity needed in each route must not exceed the truck capacity at any point in the sequence
            HxExpression demandLambda = model.LambdaFunction(
                (i, prev) => prev + demands[sequence[i]]
            );
            HxExpression routeQuantity = model.Array(model.Range(0, c), demandLambda, 0);

            HxExpression quantityLambda = model.LambdaFunction(
                i => routeQuantity[i] <= truckCapacity
            );
            model.Constraint(model.And(model.Range(0, c), quantityLambda));

            // Distance traveled by truck k
            HxExpression distLambda = model.LambdaFunction(
                i => distMatrix[sequence[i - 1], sequence[i]]
            );
            distRoutes[k] =
                model.Sum(model.Range(1, c), distLambda)
                + model.If(c > 0, distDepot[sequence[0]] + distDepot[sequence[c - 1]], 0);

            // End of each visit
            HxExpression endLambda = model.LambdaFunction(
                (i, prev) =>
                    model.Max(
                        earliest[sequence[i]],
                        model.If(
                            i == 0,
                            distDepot[sequence[0]],
                            prev + distMatrix[sequence[i - 1], sequence[i]]
                        )
                    ) + serviceTime[sequence[i]]
            );

            endTime[k] = model.Array(model.Range(0, c), endLambda, 0);

            // Arriving home after max_horizon
            homeLateness[k] = model.If(
                trucksUsed[k],
                model.Max(0, endTime[k][c - 1] + distDepot[sequence[c - 1]] - maxHorizon),
                0
            );

            // Completing visit after latest_end
            HxExpression lateLambda = model.LambdaFunction(
                i => model.Max(endTime[k][i] - latest[sequence[i]], 0)
            );
            lateness[k] = homeLateness[k] + model.Sum(model.Range(0, c), lateLambda);
        }

        totalLateness = model.Sum(lateness);
        nbTrucksUsed = model.Sum(trucksUsed);
        totalDistance = model.Round(100 * model.Sum(distRoutes)) / 100;

        // Objective: minimize the number of trucks used, then minimize the distance traveled
        model.Minimize(totalLateness);
        model.Minimize(nbTrucksUsed);
        model.Minimize(totalDistance);

        model.Close();

        // Parameterize the optimizer
        optimizer.GetParam().SetTimeLimit(limit);

        optimizer.Solve();
    }

    /* Write the solution in a file with the following format:
     *  - number of trucks used and total distance
     *  - for each truck the customers visited (omitting the start/end at the depot) */
    void WriteSolution(string fileName)
    {
        using (StreamWriter output = new StreamWriter(fileName))
        {
            output.WriteLine(nbTrucksUsed.GetValue() + " " + totalDistance.GetDoubleValue());
            for (int k = 0; k < nbTrucks; ++k)
            {
                if (trucksUsed[k].GetValue() != 1)
                    continue;
                // Values in sequence are in 0...nbCustomers. +2 is to put it back in 2...nbCustomers+2
                // as in the data files (1 being the depot)
                HxCollection customersCollection = customersSequences[k].GetCollectionValue();
                for (int i = 0; i < customersCollection.Count(); ++i)
                    output.Write((customersCollection[i] + 1) + " ");
                output.WriteLine();
            }
        }
    }

    public static void Main(string[] args)
    {
        if (args.Length < 1)
        {
            Console.WriteLine("Usage: Pdptw inputFile [solFile] [timeLimit]");
            Environment.Exit(1);
        }
        string instanceFile = args[0];
        string outputFile = args.Length > 1 ? args[1] : null;
        string strTimeLimit = args.Length > 2 ? args[2] : "20";

        using (Pdptw model = new Pdptw())
        {
            model.ReadInstance(instanceFile);
            model.Solve(int.Parse(strTimeLimit));
            if (outputFile != null)
                model.WriteSolution(outputFile);
        }
    }

    private string[] SplitInput(StreamReader input)
    {
        string line = input.ReadLine();
        if (line == null)
            return new string[0];
        return line.Split(new[] { '\t' }, StringSplitOptions.RemoveEmptyEntries);
    }

    // The input files follow the "Li & Lim" format
    private void ReadInputPdptw(string fileName)
    {
        using (StreamReader input = new StreamReader(fileName))
        {
            string[] splitted;

            splitted = SplitInput(input);

            nbTrucks = int.Parse(splitted[0]);
            truckCapacity = int.Parse(splitted[1]);

            splitted = SplitInput(input);
            int depotX = int.Parse(splitted[1]);
            int depotY = int.Parse(splitted[2]);
            maxHorizon = int.Parse(splitted[5]);

            List<int> customersX = new List<int>();
            List<int> customersY = new List<int>();
            demandsData = new List<int>();
            earliestStartData = new List<int>();
            latestEndData = new List<int>();
            serviceTimeData = new List<int>();
            pickUpIndex = new List<int>();
            deliveryIndex = new List<int>();

            while (!input.EndOfStream)
            {
                splitted = SplitInput(input);

                if (splitted.Length < 9)
                    break;
                customersX.Add(int.Parse(splitted[1]));
                customersY.Add(int.Parse(splitted[2]));
                demandsData.Add(int.Parse(splitted[3]));
                int ready = int.Parse(splitted[4]);
                int due = int.Parse(splitted[5]);
                int service = int.Parse(splitted[6]);
                pickUpIndex.Add(int.Parse(splitted[7]) - 1);
                deliveryIndex.Add(int.Parse(splitted[8]) - 1);

                earliestStartData.Add(ready);
                latestEndData.Add(due + service); // in input files due date is meant as latest start time
                serviceTimeData.Add(service);
            }

            nbCustomers = customersX.Count;

            ComputeDistanceMatrix(depotX, depotY, customersX, customersY);
        }
    }

    // Compute the distance matrix
    private void ComputeDistanceMatrix(
        int depotX,
        int depotY,
        List<int> customersX,
        List<int> customersY
    )
    {
        distMatrixData = new double[nbCustomers][];
        for (int i = 0; i < nbCustomers; ++i)
            distMatrixData[i] = new double[nbCustomers];

        for (int i = 0; i < nbCustomers; ++i)
        {
            distMatrixData[i][i] = 0;
            for (int j = i + 1; j < nbCustomers; ++j)
            {
                double dist = ComputeDist(
                    customersX[i],
                    customersX[j],
                    customersY[i],
                    customersY[j]
                );
                distMatrixData[i][j] = dist;
                distMatrixData[j][i] = dist;
            }
        }

        distDepotData = new double[nbCustomers];
        for (int i = 0; i < nbCustomers; ++i)
            distDepotData[i] = ComputeDist(depotX, customersX[i], depotY, customersY[i]);
    }

    private double ComputeDist(int xi, int xj, int yi, int yj)
    {
        return Math.Sqrt(Math.Pow(xi - xj, 2) + Math.Pow(yi - yj, 2));
    }
}
Compilation / Execution (Windows)
javac Pdptw.java -cp %HX_HOME%\bin\hexaly.jar
java -cp %HX_HOME%\bin\hexaly.jar;. Pdptw instances\lc101.txt
Compilation / Execution (Linux)
javac Pdptw.java -cp /opt/hexaly_13_0/bin/hexaly.jar
java -cp /opt/hexaly_13_0/bin/hexaly.jar:. Pdptw instances/lc101.txt
import java.util.*;
import java.io.*;
import com.hexaly.optimizer.*;

public class Pdptw {
    // Hexaly Optimizer
    private final HexalyOptimizer optimizer;

    // Number of customers
    int nbCustomers;

    // Capacity of the trucks
    private int truckCapacity;

    // Latest allowed arrival to depot
    int maxHorizon;

    // Demand for each customer
    List<Integer> demandsData;

    // Earliest arrival for each customer
    List<Integer> earliestStartData;

    // Latest departure from each customer
    List<Integer> latestEndData;

    // Service time for each customer
    List<Integer> serviceTimeData;

    // Index for pick up for each node
    List<Integer> pickUpIndex;

    // Index for delivery for each node
    List<Integer> deliveryIndex;

    // Distance matrix between customers
    private double[][] distMatrixData;

    // Distances between customers and depot
    private double[] distDepotData;

    // Number of trucks
    private int nbTrucks;

    // Decision variables
    private HxExpression[] customersSequences;

    // Are the trucks actually used
    private HxExpression[] trucksUsed;

    // Distance traveled by each truck
    private HxExpression[] distRoutes;

    // End time array for each truck
    private HxExpression[] endTime;

    // Home lateness for each truck
    private HxExpression[] homeLateness;

    // Cumulated Lateness for each truck
    private HxExpression[] lateness;

    // Cumulated lateness in the solution (must be 0 for the solution to be valid)
    private HxExpression totalLateness;

    // Number of trucks used in the solution
    private HxExpression nbTrucksUsed;

    // Distance traveled by all the trucks
    private HxExpression totalDistance;

    private Pdptw() {
        optimizer = new HexalyOptimizer();
    }

    // Read instance data
    private void readInstance(String fileName) throws IOException {
        readInputPdptw(fileName);
    }

    private void solve(int limit) {
        // Declare the optimization model
        HxModel m = optimizer.getModel();

        trucksUsed = new HxExpression[nbTrucks];
        customersSequences = new HxExpression[nbTrucks];
        distRoutes = new HxExpression[nbTrucks];
        endTime = new HxExpression[nbTrucks];
        homeLateness = new HxExpression[nbTrucks];
        lateness = new HxExpression[nbTrucks];

        // Sequence of customers visited by each truck
        for (int k = 0; k < nbTrucks; ++k)
            customersSequences[k] = m.listVar(nbCustomers);

        // All customers must be visited by exactly one truck
        m.constraint(m.partition(customersSequences));

        // Create HexalyOptimizer arrays to be able to access them with "at" operators
        HxExpression demands = m.array(demandsData);
        HxExpression earliest = m.array(earliestStartData);
        HxExpression latest = m.array(latestEndData);
        HxExpression serviceTime = m.array(serviceTimeData);
        HxExpression distDepot = m.array(distDepotData);
        HxExpression distMatrix = m.array(distMatrixData);

        // Pickups and deliveries
        HxExpression customersSequencesArray = m.array(customersSequences);
        for (int i = 0; i < nbCustomers; ++i) {
            if (pickUpIndex.get(i) == -1) {
                HxExpression pickUpListIndex = m.find(customersSequencesArray, i);
                HxExpression deliveryListIndex = m.find(customersSequencesArray, deliveryIndex.get(i));
                m.constraint(m.eq(pickUpListIndex, deliveryListIndex));
                HxExpression pickUpList = m.at(customersSequencesArray, pickUpListIndex);
                HxExpression deliveryList = m.at(customersSequencesArray, deliveryListIndex);
                m.constraint(m.leq(m.indexOf(pickUpList, i), m.indexOf(deliveryList, deliveryIndex.get(i))));
            }
        }


        for (int k = 0; k < nbTrucks; ++k) {
            HxExpression sequence = customersSequences[k];
            HxExpression c = m.count(sequence);

            // A truck is used if it visits at least one customer
            trucksUsed[k] = m.gt(c, 0);

            // The quantity needed in each route must not exceed the truck capacity at any point in the sequence
            HxExpression demandLambda = m.lambdaFunction((i, prev) -> m.sum(prev, m.at(demands, m.at(sequence, i))));
            HxExpression routeQuantity = m.array(m.range(0, c), demandLambda, 0);

            HxExpression quantityLambda = m.lambdaFunction(i -> m.leq(m.at(routeQuantity, i), truckCapacity));
            m.constraint(m.and(m.range(0, c), quantityLambda));

            // Distance traveled by truck k
            HxExpression distLambda = m
                .lambdaFunction(i -> m.at(distMatrix, m.at(sequence, m.sub(i, 1)), m.at(sequence, i)));
            distRoutes[k] = m.sum(m.sum(m.range(1, c), distLambda), m.iif(m.gt(c, 0),
                m.sum(m.at(distDepot, m.at(sequence, 0)), m.at(distDepot, m.at(sequence, m.sub(c, 1)))), 0));

            // End of each visit
            HxExpression endLambda = m.lambdaFunction((i, prev) -> m.sum(
                m.max(m.at(earliest, m.at(sequence, i)),
                    m.sum(m.iif(m.eq(i, 0), m.at(distDepot, m.at(sequence, 0)),
                        m.sum(prev, m.at(distMatrix, m.at(sequence, m.sub(i, 1)), m.at(sequence, i)))))),
                m.at(serviceTime, m.at(sequence, i))));

            endTime[k] = m.array(m.range(0, c), endLambda, 0);

            HxExpression theEnd = endTime[k];

            // Arriving home after max_horizon
            homeLateness[k] = m.iif(trucksUsed[k],
                m.max(0,
                    m.sum(m.at(theEnd, m.sub(c, 1)), m.sub(m.at(distDepot, m.at(sequence, m.sub(c, 1))), maxHorizon))),
                0);

            // Completing visit after latest_end
            HxExpression lateLambda = m
                .lambdaFunction(i -> m.max(m.sub(m.at(theEnd, i), m.at(latest, m.at(sequence, i))), 0));
            lateness[k] = m.sum(homeLateness[k], m.sum(m.range(0, c), lateLambda));
        }

        totalLateness = m.sum(lateness);
        nbTrucksUsed = m.sum(trucksUsed);
        totalDistance = m.div(m.round(m.prod(100, m.sum(distRoutes))), 100);

        // Objective: minimize the number of trucks used, then minimize the distance traveled
        m.minimize(totalLateness);
        m.minimize(nbTrucksUsed);
        m.minimize(totalDistance);

        m.close();

        // Parameterize the optimizer
        optimizer.getParam().setTimeLimit(limit);

        optimizer.solve();
    }

    /*
     * Write the solution in a file with the following format:
     * - number of trucks used and total distance
     * - for each truck the customers visited (omitting the start/end at the depot)
     */
    private void writeSolution(String fileName) throws IOException {
        try (PrintWriter output = new PrintWriter(fileName)) {
            output.println(nbTrucksUsed.getValue() + " " + totalDistance.getDoubleValue());
            for (int k = 0; k < nbTrucks; ++k) {
                if (trucksUsed[k].getValue() != 1)
                    continue;
                // Values in sequence are in 0...nbCustomers. +2 is to put it back in 2...nbCustomers+2
                // as in the data files (1 being the depot)
                HxCollection customersCollection = customersSequences[k].getCollectionValue();
                for (int i = 0; i < customersCollection.count(); ++i) {
                    output.print((customersCollection.get(i) + 1) + " ");
                }
                output.println();
            }
        }
    }

    // The input files follow the "Li & Lim" format
    private void readInputPdptw(String fileName) throws IOException {
        try (Scanner input = new Scanner(new File(fileName))) {
            nbTrucks = input.nextInt();
            truckCapacity = input.nextInt();
            input.nextInt();

            input.nextInt();
            int depotX = input.nextInt();
            int depotY = input.nextInt();
            input.nextInt();
            input.nextInt();
            maxHorizon = input.nextInt();
            input.nextInt();
            input.nextInt();
            input.nextInt();

            List<Integer> customersX = new ArrayList<Integer>();
            List<Integer> customersY = new ArrayList<Integer>();
            demandsData = new ArrayList<Integer>();
            earliestStartData = new ArrayList<Integer>();
            latestEndData = new ArrayList<Integer>();
            serviceTimeData = new ArrayList<Integer>();
            pickUpIndex = new ArrayList<Integer>();
            deliveryIndex = new ArrayList<Integer>();

            while (input.hasNextInt()) {
                input.nextInt();
                int cx = input.nextInt();
                int cy = input.nextInt();
                int demand = input.nextInt();
                int ready = input.nextInt();
                int due = input.nextInt();
                int service = input.nextInt();
                int pick = input.nextInt();
                int delivery = input.nextInt();

                customersX.add(cx);
                customersY.add(cy);
                demandsData.add(demand);
                earliestStartData.add(ready);
                latestEndData.add(due + service); // in input files due date is meant as latest start time
                serviceTimeData.add(service);
                pickUpIndex.add(pick - 1);
                deliveryIndex.add(delivery - 1);
            }

            nbCustomers = customersX.size();

            computeDistanceMatrix(depotX, depotY, customersX, customersY);

        }
    }

    // Compute the distance matrix
    private void computeDistanceMatrix(int depotX, int depotY, List<Integer> customersX, List<Integer> customersY) {
        distMatrixData = new double[nbCustomers][nbCustomers];
        for (int i = 0; i < nbCustomers; ++i) {
            distMatrixData[i][i] = 0;
            for (int j = i + 1; j < nbCustomers; ++j) {
                double dist = computeDist(customersX.get(i), customersX.get(j), customersY.get(i), customersY.get(j));
                distMatrixData[i][j] = dist;
                distMatrixData[j][i] = dist;
            }
        }

        distDepotData = new double[nbCustomers];
        for (int i = 0; i < nbCustomers; ++i) {
            distDepotData[i] = computeDist(depotX, customersX.get(i), depotY, customersY.get(i));
        }
    }

    private double computeDist(int xi, int xj, int yi, int yj) {
        return Math.sqrt(Math.pow(xi - xj, 2) + Math.pow(yi - yj, 2));
    }

    public static void main(String[] args) {
        if (args.length < 1) {
            System.err.println("Usage: java Pdptw inputFile [outputFile] [timeLimit]");
            System.exit(1);
        }

        try {
            String instanceFile = args[0];
            String outputFile = args.length > 1 ? args[1] : null;
            String strTimeLimit = args.length > 2 ? args[2] : "20";

            Pdptw model = new Pdptw();
            model.readInstance(instanceFile);
            model.solve(Integer.parseInt(strTimeLimit));
            if (outputFile != null) {
                model.writeSolution(outputFile);
            }
        } catch (Exception ex) {
            System.err.println(ex);
            ex.printStackTrace();
            System.exit(1);
        }
    }
}

Results

Hexaly Optimizer reaches an average gap of 1.1% on the Pickup and Delivery Problem with Time Windows (PDPTW) in 1 minute of running time, on the instances from the Li & Lim benchmark, with 100 to 1,000 customersOur Pickup and Delivery Problem with Time Windows (PDPTW) benchmark page illustrates how Hexaly Optimizer outperforms traditional general-purpose optimization solvers like OR-Tools on this fundamental but challenging problem.