Project Scheduling Problem with Production and Consumption of Resources¶
Principles learned¶
Set inventory constraints
Use interval decision variables
Use a lambda expression to compute a sum with a variable number of terms
Problem¶
In the project scheduling problem with inventory constraint, a project consists in a set of tasks to be scheduled. Each task has a given duration and cannot be interrupted. There are some precedence constraints on the tasks: a task must be finished before any of its successors can start. The problem also involves two sets of resources: renewable resources, that are freed by a task as soon as it ends, and inventory resources, that can be consumed and/or produced by tasks. Each task has requirements, or weights, for each renewable resource, as well as an amount consumed when the task starts and an amount produced when the task ends for each inventory resource. The renewable resources each have a capacity: several tasks can be processed at once but their cummulated weights on each resource must not exceed this resource capacity. The inventory resources each have an initial level and this level is substracted to by starting tasks and added to by ending tasks. No inventory level can become negative at any point of time.
The goal is to find a schedule that minimizes the makespan: the time when all tasks have been processed.
Download the exampleData¶
The format of data files is as follows:
First line:
Number of tasks
Number of renewable resources
Number of inventory resources
Second line:
Maximum capacity for each renewable resource
Initial level for each inventory resource
From the third line, for each task:
Duration of the task
Renewable resource requirements (weights) for each resource
Inventory resource consumption (at the beginning) and production (at the end) for each inventory resource
Number of successors
Task ID of each successor
Program¶
The program is very similar to the original resource constrained project scheduling problem, to which we add inventory resources constraints. The original decision variables do not change: interval decision variables to model the time ranges of each task.
The precedence and cumulative (renewable) resource constraints are modeled in the same way as for the original problem: each task must end before any of its successors starts, and for each resource and each time slot t, the amount of resource consumed by the tasks currently being processsed must not exceed the capacity of this resource.
The inventory resource requirements are expressed as follows: for each inventory resource and each time slot t, the amount of this resource that has been produced by tasks that already ended, added to the initial level of this resource, must always be greater or equal to the amount of this resource consumed by tasks that already started.
To model these constrains, we use a lambda function with a sum
operator.
The makespan to minimize is the time where all tasks have ended.
- Execution:
- hexaly rcpsp_producer_consumer.hxm inFileName=instances/ConsProd_bl2002.rcp [outFileName=] [hxTimeLimit=]
use io;
/* Read instance data. The input files follow the "Kone" format */
function input() {
local usage = "Usage: hexaly rcpsp_producer_consumer.hxm inFileName=instanceFile "
+ "[outFileName=outputFile] [hxTimeLimit=timeLimit]";
if (inFileName == nil) throw usage;
inFile = io.openRead(inFileName);
nbTasks = inFile.readInt(); // Number of operations
nbResources = inFile.readInt(); // Number of renewable resources
nbInventories = inFile.readInt(); // Number of inventories
capacity[0...nbResources] = inFile.readInt();
initLevel[0...nbInventories] = inFile.readInt();
for [i in 0...nbTasks] {
duration[i] = inFile.readInt();
weight[i][0...nbResources] = inFile.readInt();
for [r in 0...nbInventories] {
startCons[i][r] = inFile.readInt();
endProd[i][r] = inFile.readInt();
}
nbSuccessors[i] = inFile.readInt();
successors[i][0...nbSuccessors[i]] = inFile.readInt()-1;
}
inFile.close();
finishLevel[r in 0...nbInventories] = initLevel[r];
for [r in 0...nbInventories] {
for [i in 0...nbTasks] {
finishLevel[r] -= startCons[i][r];
finishLevel[r] += endProd[i][r];
}
}
timeHorizon = sum[i in 0...nbTasks](duration[i]);
}
/* Declare the optimization model */
function model() {
tasks[i in 0...nbTasks] <- interval(0, timeHorizon);
for [i in 0...nbTasks] {
constraint length(tasks[i]) == duration[i];
for [s in 0...nbSuccessors[i]] {
constraint end(tasks[i]) <= start(tasks[successors[i][s]]);
}
}
makespan <- max[i in 0...nbTasks] (end(tasks[i]));
for [r in 0...nbResources] {
constraint and(0...makespan,
t => (sum[i in 0...nbTasks](weight[i][r] * (contains(tasks[i],t))) <= capacity[r]));
}
for [r in 0...nbInventories] {
constraint and(0...makespan,
t => (0 <= initLevel[r] +
sum[i in 0...nbTasks]((endProd[i][r] * (end(tasks[i]) <= t)) -
(startCons[i][r] * (start(tasks[i]) <= t)))));
}
minimize makespan;
}
/* Parameterize the solver */
function param() {
if (hxTimeLimit == nil) hxTimeLimit = 60;
}
function output() {
if (outFileName != nil) {
outFile = io.openWrite(outFileName);
println("Solution written in file ", outFileName);
outFile.println(makespan.value);
for [i in 0...nbTasks] {
outFile.println(i + 1, " ", tasks[i].value.start, " ", tasks[i].value.end);
}
}
}
- Execution (Windows)
- set PYTHONPATH=%HX_HOME%\bin\pythonpython rcpsp_producer_consumer.py instances\ConsProd_bl2002.rcp
- Execution (Linux)
- export PYTHONPATH=/opt/hexaly_13_0/bin/pythonpython rcpsp_producer_consumer.py instances/ConsProd_bl2002.rcp
import hexaly.optimizer
import sys
# The input files follow the "Patterson" format
def read_instance(filename):
with open(filename) as f:
lines = f.readlines()
first_line = lines[0].split()
# Number of tasks
nb_tasks = int(first_line[0])
# Number of resources
nb_resources = int(first_line[1])
# Number of inventories
nb_inventories = int(first_line[2])
second_line = lines[1].split()
# Maximum capacity of each resource
capacity = [int(second_line[r]) for r in range(nb_resources)]
# Initial level of each inventory
init_level = [int(second_line[r + nb_resources]) for r in range(nb_inventories)]
# Duration of each task
duration = [0 for i in range(nb_tasks)]
# Resource weight of resource r required for task i
weight = [[] for i in range(nb_tasks)]
# Inventory consumed at beginning of task i
start_cons = [[] for i in range(nb_tasks)]
# Inventory produced at end of task i
end_prod = [[] for i in range(nb_tasks)]
# Number of successors
nb_successors = [0 for i in range(nb_tasks)]
# Successors of each task i
successors = [[] for i in range(nb_tasks)]
for i in range(nb_tasks):
line = lines[i + 2].split()
duration[i] = int(line[0])
weight[i] = [int(line[r + 1]) for r in range(nb_resources)]
start_cons[i] = [int(line[2*r + nb_resources + 1]) for r in range(nb_inventories)]
end_prod[i] = [int(line[2*r + nb_resources + 2]) for r in range(nb_inventories)]
nb_successors[i] = int(line[2*nb_inventories + nb_resources + 1])
successors[i] = [int(line[2*nb_inventories + nb_resources + 2 + s]) - 1 for s in range(nb_successors[i])]
# Trivial upper bound for the start times of the tasks
horizon = sum(duration[i] for i in range(nb_tasks))
return (nb_tasks, nb_resources, nb_inventories, capacity, init_level, duration, weight, start_cons, end_prod, nb_successors, successors, horizon)
def main(instance_file, output_file, time_limit):
nb_tasks, nb_resources, nb_inventories, capacity, init_level, duration, weight, start_cons, end_prod, nb_successors, successors, horizon = read_instance(
instance_file)
with hexaly.optimizer.HexalyOptimizer() as optimizer:
#
# Declare the optimization model
#
model = optimizer.model
# Interval decisions: time range of each task
tasks = [model.interval(0, horizon) for _ in range(nb_tasks)]
# Task duration constraints
for i in range(nb_tasks):
model.constraint(model.length(tasks[i]) == duration[i])
# Precedence constraints between the tasks
for i in range(nb_tasks):
for s in range(nb_successors[i]):
model.constraint(tasks[i] < tasks[successors[i][s]])
# Makespan: end of the last task
makespan = model.max([model.end(tasks[i]) for i in range(nb_tasks)])
# Cumulative resource constraints
for r in range(nb_resources):
capacity_respected = model.lambda_function(
lambda t: model.sum(weight[i][r] * model.contains(tasks[i], t)
for i in range(nb_tasks))
<= capacity[r])
model.constraint(model.and_(model.range(makespan), capacity_respected))
# Non-negative inventory constraints
for r in range(nb_resources):
inventory_value = model.lambda_function(
lambda t: model.sum(end_prod[i][r] * (model.end(tasks[i]) <= t)
- start_cons[i][r] * (model.start(tasks[i]) <= t)
for i in range(nb_tasks))
+ init_level[r]
>= 0)
model.constraint(model.and_(model.range(makespan), inventory_value))
# Minimize the makespan
model.minimize(makespan)
model.close()
# Parameterize the optimizer
optimizer.param.time_limit = time_limit
optimizer.solve()
#
# Write the solution in a file with the following format:
# - total makespan
# - for each task, the task id, the start and end times
#
if output_file != None:
with open(output_file, "w") as f:
print("Solution written in file", output_file)
f.write(str(makespan.value) + "\n")
for i in range(nb_tasks):
f.write(str(i + 1) + " " + str(tasks[i].value.start()) + " " + str(tasks[i].value.end()))
f.write("\n")
if __name__ == '__main__':
if len(sys.argv) < 2:
print("Usage: python rcpsp_producer_consumer.py instance_file [output_file] [time_limit]")
sys.exit(1)
instance_file = sys.argv[1]
output_file = sys.argv[2] if len(sys.argv) >= 3 else None
time_limit = int(sys.argv[3]) if len(sys.argv) >= 4 else 60
main(instance_file, output_file, time_limit)
- Compilation / Execution (Windows)
- cl /EHsc rcpsp_producer_consumer.cpp -I%HX_HOME%\include /link %HX_HOME%\bin\hexaly130.librcpsp_producer_consumer instances\ConsProd_bl2002.rcp
- Compilation / Execution (Linux)
- g++ rcpsp_producer_consumer.cpp -I/opt/hexaly_13_0/include -lhexaly130 -lpthread -o rcpsp_producer_consumer./rcpsp_producer_consumer instances/ConsProd_bl2002.rcp
#include "optimizer/hexalyoptimizer.h"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <limits>
#include <numeric>
#include <vector>
using namespace hexaly;
class RcpspProducerConsumer {
private:
// Number of tasks
int nbTasks;
// Number of resources
int nbResources;
// Number of inventories
int nbInventories;
// Maximum capacity of each resource
std::vector<int> capacity;
// Initial level of each inventory
std::vector<int> initLevel;
// Duration of each task
std::vector<int> duration;
// Resource weight of resource r required for task i
std::vector<std::vector<int>> weight;
// Inventory consumed at beginning of task
std::vector<std::vector<int>> startCons;
// Inventory produced at end of task
std::vector<std::vector<int>> endProd;
// Number of successors
std::vector<int> nbSuccessors;
// Successors for each task i
std::vector<std::vector<int>> successors;
// Trivial upper bound for the start times of the tasks
int horizon = 0;
// Hexaly Optimizer
HexalyOptimizer optimizer;
// Decision variables: time range of each task
std::vector<HxExpression> tasks;
// Objective = minimize the makespan: end of the last task of the last job
HxExpression makespan;
public:
RcpspProducerConsumer(const std::string& fileName) : optimizer() {}
// The input files follow the "Patterson" format
void readInstance(const std::string& fileName) {
std::ifstream infile;
infile.exceptions(std::ifstream::failbit | std::ifstream::badbit);
infile.open(fileName.c_str());
infile >> nbTasks;
infile >> nbResources;
infile >> nbInventories;
// The maximum capacity of each resource
capacity.resize(nbResources);
for (int r = 0; r < nbResources; ++r) {
infile >> capacity[r];
}
// The initial level of each inventory
initLevel.resize(nbInventories);
for (int r = 0; r < nbInventories; ++r) {
infile >> initLevel[r];
}
duration.resize(nbTasks);
weight.resize(nbTasks);
startCons.resize(nbTasks);
endProd.resize(nbTasks);
nbSuccessors.resize(nbTasks);
successors.resize(nbTasks);
for (int i = 0; i < nbTasks; ++i) {
infile >> duration[i];
weight[i].resize(nbResources);
for (int r = 0; r < nbResources; ++r) {
infile >> weight[i][r];
}
startCons[i].resize(nbInventories);
endProd[i].resize(nbInventories);
for (int r = 0; r < nbInventories; ++r) {
infile >> startCons[i][r];
infile >> endProd[i][r];
}
infile >> nbSuccessors[i];
successors[i].resize(nbSuccessors[i]);
for (int s = 0; s < nbSuccessors[i]; ++s) {
int x;
infile >> x;
successors[i][s] = x - 1;
}
horizon += duration[i];
}
infile.close();
}
void solve(int TimeLimit) {
// Declare the optimization model
HxModel model = optimizer.getModel();
// Interval decisions: time range of each task
tasks.resize(nbTasks);
for (int i = 0; i < nbTasks; ++i) {
tasks[i] = model.intervalVar(0, horizon);
// Task duration constraints
model.constraint(model.length(tasks[i]) == duration[i]);
}
// Precedence constraints between the tasks
for (int i = 0; i < nbTasks; ++i) {
for (int s = 0; s < nbSuccessors[i]; ++s) {
model.constraint(tasks[i] < tasks[successors[i][s]]);
}
}
// Makespan: end of the last task
makespan = model.max();
for (int i = 0; i < nbTasks; ++i) {
makespan.addOperand(model.end(tasks[i]));
}
// Cumulative resource constraints
for (int r = 0; r < nbResources; ++r) {
HxExpression capacityRespected = model.createLambdaFunction([&](HxExpression t) {
HxExpression totalWeight = model.sum();
for (int i = 0; i < nbTasks; ++i) {
HxExpression taskWeight = weight[i][r] * model.contains(tasks[i], t);
totalWeight.addOperand(taskWeight);
}
return model.leq(totalWeight, capacity[r]);
});
model.constraint(model.and_(model.range(0, makespan), capacityRespected));
}
// Non-negative inventory constraints
for (int r = 0; r < nbInventories; ++r) {
HxExpression inventoryValue = model.createLambdaFunction([&](HxExpression t) {
HxExpression totalValue = model.sum();
totalValue.addOperand(initLevel[r]);
for (int i = 0; i < nbTasks; ++i) {
HxExpression taskValue = endProd[i][r] * (t >= model.end(tasks[i])) - startCons[i][r] * (t >= model.start(tasks[i]));
totalValue.addOperand(taskValue);
}
return model.geq(totalValue, 0);
});
model.constraint(model.and_(model.range(0, makespan), inventoryValue));
}
// Minimize the makespan
model.minimize(makespan);
model.close();
// Parameterize the optimizer
optimizer.getParam().setTimeLimit(TimeLimit);
optimizer.solve();
}
/* Write the solution in a file with the following format:
* - total makespan
* - for each task, the task id, the start and end times */
void writeSolution(const std::string& fileName) {
std::ofstream outfile(fileName.c_str());
if (!outfile.is_open()) {
std::cerr << "File " << fileName << " cannot be opened." << std::endl;
exit(1);
}
std::cout << "Solution written in file " << fileName << std::endl;
outfile << makespan.getValue() << std::endl;
for (int i = 0; i < nbTasks; ++i) {
outfile << i + 1 << " " << tasks[i].getIntervalValue().getStart() << " "
<< tasks[i].getIntervalValue().getEnd() << std::endl;
}
outfile.close();
}
};
int main(int argc, char** argv) {
if (argc < 2) {
std::cout << "Usage: rcpsp_producer_consumer instanceFile [outputFile] [timeLimit]" << std::endl;
exit(1);
}
const char* instanceFile = argv[1];
const char* outputFile = argc > 2 ? argv[2] : NULL;
const char* strTimeLimit = argc > 3 ? argv[3] : "60";
RcpspProducerConsumer model(instanceFile);
try {
model.readInstance(instanceFile);
const int timeLimit = atoi(strTimeLimit);
model.solve(timeLimit);
if (outputFile != NULL)
model.writeSolution(outputFile);
return 0;
} catch (const std::exception& e) {
std::cerr << "An error occurred: " << e.what() << std::endl;
return 1;
}
}
- Compilation / Execution (Windows)
- copy %HX_HOME%\bin\Hexaly.NET.dll .csc RcpspProducerConsumer.cs /reference:Hexaly.NET.dllRcpspProducerConsumer instances\ConsProd_bl2002.rcp
using System;
using System.IO;
using Hexaly.Optimizer;
public class RcpspProducerConsumer : IDisposable
{
// Number of tasks
private int nbTasks;
// Number of resources
private int nbResources;
// Number of inventories
private int nbInventories;
// Maximum capacity of each resource
private int[] capacity;
// Initial level of each inventory
private int[] initLevel;
// Duration of each task
private int[] duration;
// Resource weight of resource r required for task i
private int[,] weight;
// Inventory consumed at beginning of task
private int[,] startCons;
// Inventory produced at end of task
private int[,] endProd;
// Number of successors
private int[] nbSuccessors;
// Successors for each task i
private int[][] successors;
// Trivial upper bound for the start times of the tasks
private int horizon = 0;
// Hexaly Optimizer
private HexalyOptimizer optimizer;
// Decision variables: time range of each task
private HxExpression[] tasks;
// Objective = minimize the makespan: end of the last task of the last job
private HxExpression makespan;
public RcpspProducerConsumer(string fileName)
{
optimizer = new HexalyOptimizer();
}
string[] SplitInput(StreamReader input)
{
string line = input.ReadLine();
if (line == null)
return new string[0];
return line.Split(new[] { ' ' }, StringSplitOptions.RemoveEmptyEntries);
}
// The input files follow the "Patterson" format
private void ReadInstance(string fileName)
{
using (StreamReader input = new StreamReader(fileName))
{
string[] splitted = SplitInput(input);
if (splitted.Length == 0)
splitted = SplitInput(input);
nbTasks = int.Parse(splitted[0]);
nbResources = int.Parse(splitted[1]);
nbInventories = int.Parse(splitted[2]);
// The maximum capacity of each resource
splitted = SplitInput(input);
capacity = new int[nbResources];
for (int r = 0; r < nbResources; ++r)
capacity[r] = int.Parse(splitted[r]);
initLevel = new int[nbInventories];
for (int r = 0; r < nbInventories; ++r)
initLevel[r] = int.Parse(splitted[r + nbResources]);
duration = new int[nbTasks];
weight = new int[nbTasks, nbResources];
startCons = new int[nbTasks, nbInventories];
endProd = new int[nbTasks, nbInventories];
nbSuccessors = new int[nbTasks];
successors = new int[nbTasks][];
for (int i = 0; i < nbTasks; ++i)
{
splitted = SplitInput(input);
if (splitted.Length == 0)
splitted = SplitInput(input);
duration[i] = int.Parse(splitted[0]);
for (int r = 0; r < nbResources; ++r)
weight[i, r] = int.Parse(splitted[r + 1]);
for (int r = 0; r < nbInventories; ++r) {
startCons[i, r] = int.Parse(splitted[2*r + nbResources + 1]);
endProd[i, r] = int.Parse(splitted[2*r + nbResources + 2]);
}
nbSuccessors[i] = int.Parse(splitted[2*nbInventories + nbResources + 1]);
successors[i] = new int[nbSuccessors[i]];
for (int s = 0; s < nbSuccessors[i]; ++s)
successors[i][s] = int.Parse(splitted[s + 2*nbInventories + nbResources + 2]) - 1;
horizon += duration[i];
}
}
}
public void Dispose()
{
optimizer.Dispose();
}
public void Solve(int timeLimit)
{
// Declare the optimization model
HxModel model = optimizer.GetModel();
// Interval decisions: time range of each task
tasks = new HxExpression[nbTasks];
for (int i = 0; i < nbTasks; ++i)
{
tasks[i] = model.Interval(0, horizon);
// Task duration constraints
model.Constraint(model.Length(tasks[i]) == duration[i]);
}
// Precedence constraints between the tasks
for (int i = 0; i < nbTasks; ++i)
{
for (int s = 0; s < nbSuccessors[i]; ++s)
{
model.Constraint(tasks[i] < tasks[successors[i][s]]);
}
}
// Makespan: end of the last task
makespan = model.Max();
for (int i = 0; i < nbTasks; ++i)
makespan.AddOperand(model.End(tasks[i]));
// Cumulative resource constraints
for (int r = 0; r < nbResources; ++r)
{
HxExpression capacityRespected = model.LambdaFunction(t =>
{
HxExpression totalWeight = model.Sum();
for (int i = 0; i < nbTasks; ++i)
{
totalWeight.AddOperand(weight[i, r] * model.Contains(tasks[i], t));
}
return totalWeight <= capacity[r];
}
);
model.Constraint(model.And(model.Range(0, makespan), capacityRespected));
}
// Non-negative inventories constraints
for (int r = 0; r < nbInventories; ++r)
{
HxExpression inventoryValue = model.LambdaFunction(t =>
{
HxExpression totalValue = model.Sum();
totalValue.AddOperand(initLevel[r]);
for (int i = 0; i < nbTasks; ++i)
{
totalValue.AddOperand(endProd[i,r] * (model.End(tasks[i]) <= t) - startCons[i,r] * (model.Start(tasks[i]) <= t));
}
return totalValue >= 0;
}
);
model.Constraint(model.And(model.Range(0, makespan), inventoryValue));
}
// Minimize the makespan
model.Minimize(makespan);
model.Close();
// Parameterize the optimizer
optimizer.GetParam().SetTimeLimit(timeLimit);
optimizer.Solve();
}
/* Write the solution in a file with the following format:
* - total makespan
* - for each task, the task id, the start and end times */
public void WriteSolution(string fileName)
{
using (StreamWriter output = new StreamWriter(fileName))
{
Console.WriteLine("Solution written in file " + fileName);
output.WriteLine(makespan.GetValue());
for (int i = 0; i < nbTasks; ++i)
{
output.Write((i + 1) + " " + tasks[i].GetIntervalValue().Start() + " " + tasks[i].GetIntervalValue().End());
output.WriteLine();
}
}
}
public static void Main(string[] args)
{
if (args.Length < 1)
{
Console.WriteLine("Usage: RcpspProducerConsumer instanceFile [outputFile] [timeLimit]");
System.Environment.Exit(1);
}
string instanceFile = args[0];
string outputFile = args.Length > 1 ? args[1] : null;
string strTimeLimit = args.Length > 2 ? args[2] : "60";
using (RcpspProducerConsumer model = new RcpspProducerConsumer(instanceFile))
{
model.ReadInstance(instanceFile);
model.Solve(int.Parse(strTimeLimit));
if (outputFile != null)
model.WriteSolution(outputFile);
}
}
}
- Compilation / Execution (Windows)
- javac RcpspProducerConsumer.java -cp %HX_HOME%\bin\hexaly.jarjava -cp %HX_HOME%\bin\hexaly.jar;. RcpspProducerConsumer instances\ConsProd_bl2002.rcp
- Compilation / Execution (Linux)
- javac RcpspProducerConsumer.java -cp /opt/hexaly_13_0/bin/hexaly.jarjava -cp /opt/hexaly_13_0/bin/hexaly.jar:. RcpspProducerConsumer instances/ConsProd_bl2002.rcp
import java.util.*;
import java.io.*;
import com.hexaly.optimizer.*;
public class RcpspProducerConsumer {
// Number of tasks
private int nbTasks;
// Number of resources
private int nbResources;
// Number of inventories
private int nbInventories;
// Maximum capacity of each resource
private int[] capacity;
// Initial level of each inventory
private int[] initLevel;
// Duration of each task
private int[] duration;
// Resource weight of resource r required for task i
private int[][] weight;
// Inventory consumed at beginning of task
private int[][] startCons;
// Inventory produced at end of task
private int[][] endProd;
// Number of successors
private int[] nbSuccessors;
// Successors for each task i
private int[][] successors;
// Trivial upper bound for the start times of the tasks
private int horizon = 0;
// Hexaly Optimizer
final HexalyOptimizer optimizer;
// Decision variables: time range of each task
private HxExpression[] tasks;
// Objective = minimize the makespan: end of the last task of the last job
private HxExpression makespan;
public RcpspProducerConsumer(HexalyOptimizer optimizer, String fileName) throws IOException {
this.optimizer = optimizer;
}
// The input files follow the "Patterson" format
private void readInstance(String fileName) throws IOException {
try (Scanner input = new Scanner(new File(fileName))) {
nbTasks = input.nextInt();
nbResources = input.nextInt();
nbInventories = input.nextInt();
// The maximum capacity of each resource
capacity = new int[nbResources];
for (int r = 0; r < nbResources; ++r) {
capacity[r] = input.nextInt();
}
// The initial level of each inventory
initLevel = new int[nbInventories];
for (int r = 0; r < nbInventories; ++r) {
initLevel[r] = input.nextInt();
}
duration = new int[nbTasks];
weight = new int[nbTasks][nbResources];
startCons = new int[nbTasks][nbInventories];
endProd = new int[nbTasks][nbInventories];
nbSuccessors = new int[nbTasks];
successors = new int[nbTasks][];
for (int i = 0; i < nbTasks; ++i) {
duration[i] = input.nextInt();
for (int r = 0; r < nbResources; ++r) {
weight[i][r] = input.nextInt();
}
for (int r = 0; r < nbInventories; ++r) {
startCons[i][r] = input.nextInt();
endProd[i][r] = input.nextInt();
}
nbSuccessors[i] = input.nextInt();
successors[i] = new int[nbSuccessors[i]];
for (int s = 0; s < nbSuccessors[i]; ++s) {
successors[i][s] = input.nextInt() - 1;
}
horizon += duration[i];
}
}
}
public void solve(int timeLimit) {
// Declare the optimization model
HxModel model = optimizer.getModel();
// Interval decisions: time range of each task
tasks = new HxExpression[nbTasks];
for (int i = 0; i < nbTasks; ++i) {
tasks[i] = model.intervalVar(0, horizon);
// Task duration constraints
model.constraint(model.eq(model.length(tasks[i]), duration[i]));
}
// Precedence constraints between the tasks
for (int i = 0; i < nbTasks; ++i) {
for (int s = 0; s < nbSuccessors[i]; ++s) {
model.constraint(model.lt(tasks[i], tasks[successors[i][s]]));
}
}
// Makespan: end of the last task
makespan = model.max();
for (int i = 0; i < nbTasks; ++i) {
makespan.addOperand(model.end(tasks[i]));
}
// Cumulative resource constraints
for (int r = 0; r < nbResources; ++r) {
final int rL = r;
HxExpression capacityRespected = model.lambdaFunction(t -> {
HxExpression totalWeight = model.sum();
for (int i = 0; i < nbTasks; ++i) {
totalWeight.addOperand(model.prod(
weight[i][rL],
model.contains(tasks[i], t)));
}
return model.leq(totalWeight, capacity[rL]);
});
model.constraint(model.and(model.range(0, makespan), capacityRespected));
}
// Non-negative inventories constraints
for (int r = 0; r < nbInventories; ++r) {
final int rL = r;
HxExpression inventoryValue = model.lambdaFunction(t -> {
HxExpression totalValue = model.sum();
totalValue.addOperand(initLevel[rL]);
for (int i = 0; i < nbTasks; ++i) {
totalValue.addOperand(model.sub(model.prod(
endProd[i][rL],
model.leq(model.end(tasks[i]), t)),
model.prod(startCons[i][rL],
model.leq(model.start(tasks[i]), t))));
}
return model.geq(totalValue, 0);
});
model.constraint(model.and(model.range(0, makespan), inventoryValue));
}
// Minimize the makespan
model.minimize(makespan);
model.close();
// Parameterize the optimizer
optimizer.getParam().setTimeLimit(timeLimit);
optimizer.solve();
}
/*
* Write the solution in a file with the following format:
* - total makespan
* - for each task, the task id, the start and end times
*/
public void writeSolution(String fileName) throws IOException {
try (PrintWriter output = new PrintWriter(fileName)) {
System.out.println("Solution written in file " + fileName);
output.println(makespan.getValue());
for (int i = 0; i < nbTasks; ++i) {
output.println((i + 1) + " " + tasks[i].getIntervalValue().getStart() + " "
+ tasks[i].getIntervalValue().getEnd());
}
}
}
public static void main(String[] args) {
if (args.length < 1) {
System.out.println("Usage: java RcpspProducerConsumer instanceFile [outputFile] [timeLimit]");
System.exit(1);
}
String instanceFile = args[0];
String outputFile = args.length > 1 ? args[1] : null;
String strTimeLimit = args.length > 2 ? args[2] : "60";
try (HexalyOptimizer optimizer = new HexalyOptimizer()) {
RcpspProducerConsumer model = new RcpspProducerConsumer(optimizer, instanceFile);
model.readInstance(instanceFile);
model.solve(Integer.parseInt(strTimeLimit));
if (outputFile != null) {
model.writeSolution(outputFile);
}
} catch (Exception ex) {
System.err.println(ex);
ex.printStackTrace();
System.exit(1);
}
}
}