Hosaki Function¶
Note
This problem can be resolved without the surrogate modeling functionality (see branin function). Indeed, this functionality is useful when the objective function is computationally expensive. The purpose of this example is only to illustrate the use of surrogate modeling on a simple and computationally inexpensive problem.
Principles learned¶
Create an external function
Enable the surrogate modeling on an external function
Set an evaluation limit to the function
Problem¶
Hosaki function is defined by
This is a box-constrained problem.
For more details, see: hosaki_function.html
Download the exampleProgram¶
The objective function is defined by an external function. It receives the
argument values via the LSExternalArgumentValues
, and returns the value of
the function at this point.
Two floating decision variables x1
and x2
are declared. The domains of
these variables are respectively [0,5]
and [0,6]
. To calculate the value
returned by the external function, an O_Call
expression is created. This
expression is then minimized.
To use the surrogate modeling feature, the method enableSurrogateModeling
available on the LSExternalContext
of the function is called. This method
returns the LSSurrogateParameters
, on which the maximum number of calls to
the function can be set, as the function is usually computationally expensive.
- Execution:
- hexaly hosaki.hxm [evaluationLimit=] [solFileName=]
use io;
/* External function */
function hosaki(x1, x2) {
return (1 - 8*x1 + 7*pow(x1, 2) - 7*pow(x1, 3)/3 + pow(x1, 4)/4) * pow(x2, 2)
* exp(-x2);
}
/* Declare the optimization model */
function model() {
// Numerical decisions
x1 <- float(0, 5);
x2 <- float(0, 6);
// Create and call the function
f <- doubleExternalFunction(hosaki);
funcCall <- call(f, x1, x2);
// Enable surrogate modeling
surrogateParams = f.context.enableSurrogateModeling();
// Minimize function call
minimize(funcCall);
}
/* Parameterize the solver */
function param() {
if (evaluationLimit == nil) surrogateParams.evaluationLimit = 30;
else surrogateParams.evaluationLimit = evaluationLimit;
}
/* Write the solution in a file */
function output() {
if (solFileName != nil) {
local solFile = io.openWrite(solFileName);
solFile.println("obj=", funcCall.value);
solFile.println("x1=", x1.value);
solFile.println("x2=", x2.value);
}
}
- Execution (Windows)
- set PYTHONPATH=%HX_HOME%\bin\pythonpython hosaki.py
- Execution (Linux)
- export PYTHONPATH=/opt/hexaly_13_0/bin/pythonpython hosaki.py
import hexaly.optimizer
import sys
import math
#
# External function
#
def hosaki_function(argument_values):
x1 = argument_values[0]
x2 = argument_values[1]
return ((1 - 8 * x1 + 7 * pow(x1, 2) - 7 * pow(x1, 3) / 3 + pow(x1, 4) / 4)
* pow(x2, 2) * math.exp(-x2))
def main(evaluation_limit, output_file):
with hexaly.optimizer.HexalyOptimizer() as optimizer:
#
# Declare the optimization model
#
model = optimizer.model
# Numerical decisions
x1 = model.float(0, 5)
x2 = model.float(0, 6)
# Create and call the function
f = model.create_double_external_function(hosaki_function)
func_call = model.call(f, x1, x2)
# Enable surrogate modeling
surrogate_params = f.external_context.enable_surrogate_modeling()
# Minimize function call
model.minimize(func_call)
model.close()
# Parameterize the optimizer
surrogate_params.evaluation_limit = evaluation_limit
optimizer.solve()
# Write the solution in a file
if output_file is not None:
with open(output_file, 'w') as f:
f.write("obj=%f\n" % func_call.value)
f.write("x1=%f\n" % x1.value)
f.write("x2=%f\n" % x2.value)
if __name__ == '__main__':
output_file = sys.argv[1] if len(sys.argv) > 1 else None
evaluation_limit = int(sys.argv[2]) if len(sys.argv) > 2 else 30
main(evaluation_limit, output_file)
- Compilation / Execution (Windows)
- cl /EHsc hosaki.cpp -I%HX_HOME%\include /link %HX_HOME%\bin\hexaly130.libhosaki
- Compilation / Execution (Linux)
- g++ hosaki.cpp -I/opt/hexaly_13_0/include -lhexaly130 -lpthread -o hosakihosaki
#include "optimizer/hexalyoptimizer.h"
#include <cmath>
#include <fstream>
#include <iostream>
using namespace hexaly;
using namespace std;
/* External function */
class HosakiFunction : public HxExternalFunction<hxdouble> {
hxdouble call(const HxExternalArgumentValues& argumentValues) override {
hxdouble x1 = argumentValues.getDoubleValue(0);
hxdouble x2 = argumentValues.getDoubleValue(1);
return (1 - 8 * x1 + 7 * pow(x1, 2) - 7 * pow(x1, 3) / 3 + pow(x1, 4) / 4) * pow(x2, 2) * exp(-x2);
}
};
class Hosaki {
public:
// Hexaly Optimizer
HexalyOptimizer optimizer;
// Hexaly Program variables
HxExpression x1;
HxExpression x2;
HxExpression funcCall;
void solve(int evaluationLimit) {
// Declare the optimization model
HxModel model = optimizer.getModel();
// Numerical decisions
x1 = model.floatVar(0, 5);
x2 = model.floatVar(0, 6);
// Create and call the function
HosakiFunction funcClass;
HxExpression func = model.createExternalFunction(&funcClass);
funcCall = model.call(func, x1, x2);
// Enable surrogate modeling
HxExternalContext context = func.getExternalContext();
HxSurrogateParameters surrogateParams = context.enableSurrogateModeling();
// Minimize function call
model.minimize(funcCall);
model.close();
// Parameterize the optimizer
surrogateParams.setEvaluationLimit(evaluationLimit);
optimizer.solve();
}
/* Write the solution in a file */
void writeSolution(const string& fileName) {
ofstream outfile;
outfile.exceptions(ofstream::failbit | ofstream::badbit);
outfile.open(fileName.c_str());
outfile << "obj=" << funcCall.getDoubleValue() << endl;
outfile << "x1=" << x1.getDoubleValue() << endl;
outfile << "x2=" << x2.getDoubleValue() << endl;
}
};
int main(int argc, char** argv) {
const char* solFile = argc > 1 ? argv[1] : NULL;
const char* strEvaluationLimit = argc > 2 ? argv[2] : "30";
try {
Hosaki model;
model.solve(atoi(strEvaluationLimit));
if (solFile != NULL)
model.writeSolution(solFile);
} catch (const exception& e) {
cerr << "An error occurred: " << e.what() << endl;
return 1;
}
return 0;
}
- Compilation / Execution (Windows)
- copy %HX_HOME%\bin\Hexaly.NET.dll .csc Hosaki.cs /reference:Hexaly.NET.dllHosaki
using System;
using System.IO;
using Hexaly.Optimizer;
public class Hosaki : IDisposable
{
/* External function */
public class HosakiFunction
{
public double Call(HxExternalArgumentValues argumentValues)
{
double x1 = argumentValues.GetDoubleValue(0);
double x2 = argumentValues.GetDoubleValue(1);
return (1 - 8 * x1 + 7 * Math.Pow(x1, 2) - 7 * Math.Pow(x1, 3) / 3 + Math.Pow(x1, 4) / 4)
* Math.Pow(x2, 2)
* Math.Exp(-x2);
}
}
// Hexaly Optimizer
private HexalyOptimizer optimizer;
// Hexaly Program variables
private HxExpression x1;
private HxExpression x2;
private HxExpression funcCall;
public Hosaki()
{
optimizer = new HexalyOptimizer();
}
public void Dispose()
{
if (optimizer != null)
optimizer.Dispose();
}
public void Solve(int evaluationLimit)
{
// Declare the optimization model
HxModel model = optimizer.GetModel();
// Numerical decisions
x1 = model.Float(0, 5);
x2 = model.Float(0, 6);
// Create and call the function
HosakiFunction hosakiFunction = new HosakiFunction();
HxDoubleExternalFunction func = new HxDoubleExternalFunction(hosakiFunction.Call);
HxExpression funcExpr = model.DoubleExternalFunction(func);
funcCall = model.Call(funcExpr, x1, x2);
// Enable surrogate modeling
HxExternalContext context = funcExpr.GetExternalContext();
HxSurrogateParameters surrogateParams = context.EnableSurrogateModeling();
// Minimize function call
model.Minimize(funcCall);
model.Close();
// Parameterize the optimizer
surrogateParams.SetEvaluationLimit(evaluationLimit);
optimizer.Solve();
}
/* Write the solution in a file */
public void WriteSolution(string fileName)
{
using (StreamWriter output = new StreamWriter(fileName))
{
output.WriteLine("obj=" + funcCall.GetDoubleValue());
output.WriteLine("x1=" + x1.GetDoubleValue());
output.WriteLine("x2=" + x2.GetDoubleValue());
}
}
public static void Main(string[] args)
{
string outputFile = args.Length > 0 ? args[0] : null;
string strEvaluationLimit = args.Length > 1 ? args[1] : "30";
using (Hosaki model = new Hosaki())
{
model.Solve(int.Parse(strEvaluationLimit));
if (outputFile != null)
model.WriteSolution(outputFile);
}
}
}
- Compilation / Execution (Windows)
- javac Hosaki.java -cp %HX_HOME%\bin\hexaly.jarjava -cp %HX_HOME%\bin\hexaly.jar;. Hosaki
- Compilation / Execution (Linux)
- javac Hosaki.java -cp /opt/hexaly_13_0/bin/hexaly.jarjava -cp /opt/hexaly_13_0/bin/hexaly.jar:. Hosaki
import java.io.*;
import java.lang.Math;
import com.hexaly.optimizer.*;
public class Hosaki {
/* External function */
private static class HosakiFunction implements HxDoubleExternalFunction {
@Override
public double call(HxExternalArgumentValues argumentValues) {
double x1 = argumentValues.getDoubleValue(0);
double x2 = argumentValues.getDoubleValue(1);
return (1 - 8 * x1 + 7 * Math.pow(x1, 2) - 7 * Math.pow(x1, 3) / 3 + Math.pow(x1, 4) / 4) * Math.pow(x2, 2) * Math.exp(-x2);
}
}
// Hexaly Optimizer
private final HexalyOptimizer optimizer;
// Hexaly Program variables
private HxExpression x1;
private HxExpression x2;
private HxExpression funcCall;
private Hosaki(HexalyOptimizer optimizer) {
this.optimizer = optimizer;
}
private void solve(int evaluationLimit) {
// Declare the optimization model
HxModel model = optimizer.getModel();
// Numerical decisions
x1 = model.floatVar(0, 5);
x2 = model.floatVar(0, 6);
// Create and call the function
HosakiFunction function = new HosakiFunction();
HxExpression func = model.doubleExternalFunction(function);
funcCall = model.call(func, x1, x2);
// Enable surrogate modeling
HxExternalContext context = func.getExternalContext();
HxSurrogateParameters surrogateParams = context.enableSurrogateModeling();
// Minimize function call
model.minimize(funcCall);
model.close();
// Parameterize the optimizer
surrogateParams.setEvaluationLimit(evaluationLimit);
optimizer.solve();
}
/* Write the solution in a file */
private void writeSolution(String fileName) throws IOException {
try (PrintWriter output = new PrintWriter(fileName)) {
output.println("obj=" + funcCall.getDoubleValue());
output.println("x1=" + x1.getDoubleValue());
output.println("x2=" + x2.getDoubleValue());
}
}
public static void main(String[] args) {
String outputFile = args.length > 0 ? args[0] : null;
String strEvaluationLimit = args.length > 1 ? args[1] : "30";
try (HexalyOptimizer optimizer = new HexalyOptimizer()) {
Hosaki model = new Hosaki(optimizer);
model.solve(Integer.parseInt(strEvaluationLimit));
if (outputFile != null) {
model.writeSolution(outputFile);
}
} catch (Exception ex) {
System.err.println(ex);
ex.printStackTrace();
System.exit(1);
}
}
}