Portfolio Selection Optimization Problem¶
Principles learned¶
Add float decision variables
Minimize a non-linear objective
Problem¶
This portfolio problem is a simplification of the Markowitz portfolio selection optimization problem. A portfolio has to be invested among a set of stocks. The return for each stock and the covariance matrix of risk are known. We want to reach an expected profit, minimizing the risk of the portfolio. The expected profit is fixed.
The goal is to find the part of the portfolio to invest in each stock. All the portfolio has to be used.
Download the exampleData¶
The format of the data files is as follows:
First line: expected profit (in percentage of the portfolio)
Second line: number of stocks
Covariance matrix representing the balance risk for each pair of stocks
Last line: for each stock, the variation of its price
Program¶
The decision variables are floating variables that model the proportion of the portfolio invested in each stock.
The return of the portfolio is the weighted sum of all the profits of the stocks, where the weights are the proportion of the portfolio dedicated to each stock.
The portfolio risk is a convex quadratic function, obtained by summing for each stock pair the product between the proportions invested and the corresponding covariance.
The constraints are that the whole portfolio has to be invested and that the profit cannot be less than the expected profit. The objective of the problem consists in minimizing the risk.
- Execution:
- localsolver portfolio.lsp inFileName=instances/small_01.txt [outFileName=] [lsTimeLimit=]
use io;
use random;
/* Read instance data */
function input() {
local usage = "Usage: localsolver portfolio.lsp inFileName=instanceFile"
+ " [outFileName=outputFile] [lsTimeLimit=timeLimit]";
if (inFileName == nil) throw usage;
inFile = io.openRead(inFileName);
// Expected profit, in percentage of the portfolio
expectedProfit = inFile.readDouble();
// Number of stocks
nbStocks = inFile.readInt();
// Covariance among the stocks
sigmaStocks[s in 0...nbStocks][t in 0...nbStocks] = inFile.readDouble();
// Variation of the price of each stock
deltaStock[s in 0...nbStocks] = inFile.readDouble();
inFile.close();
}
/* Declare the optimization model */
function model() {
// Proportion of the portfolio invested in each stock
portfolioStock[s in 0...nbStocks] <- float(0, 1);
// Risk of the portfolio
risk <- sum[s in 0...nbStocks][t in 0...nbStocks](portfolioStock[s] *
portfolioStock[t] * sigmaStocks[s][t]);
// Return of the portfolio in percentage
profit <- sum[s in 0...nbStocks](portfolioStock[s] * deltaStock[s]);
// All the portfolio is used
constraint sum[s in 0...nbStocks](portfolioStock[s]) == 1.0;
// The profit is at least the expected profit
constraint profit >= expectedProfit;
// Minimize the risk
minimize risk;
}
/* Parameterize the solver */
function param() {
if (lsTimeLimit == nil) lsTimeLimit = 60;
}
/* Write the solution in a file with the following format:
* - for each stock, the proportion of the porfolio invested
- the final profit in percentage of the portfolio */
function output() {
if (outFileName != nil) {
outFile = io.openWrite(outFileName);
println("Solution written in file ", outFileName);
for [s in 0...nbStocks] {
local proportion = portfolioStock[s].value;
outFile.println("Stock ", s, ": ", round(proportion * 1000) / 10, "%");
}
outFile.println("Profit: " + profit.value + "%");
}
}
- Execution (Windows)
- set PYTHONPATH=%LS_HOME%\bin\pythonpython portfolio.py instances\small_01.txt
- Execution (Linux)
- export PYTHONPATH=/opt/localsolver_12_5/bin/pythonpython portfolio.py instances/small_01.txt
from re import S
import localsolver
import sys
def read_instance(filename):
with open(filename) as f:
lines = f.readlines()
first_line = lines[0].split()
# Expected profit, in percentage of the portfolio
expected_profit = float(first_line[0])
second_line = lines[2].split()
# Number of stocks
nb_stocks = int(second_line[0])
# Covariance among the stocks
sigma_stocks = [[0 for i in range(nb_stocks)] for j in range(nb_stocks)]
for s in range(nb_stocks):
line = lines[s+4].split()
for t in range(nb_stocks):
sigma_stocks[s][t] = float(line[t])
# Variation of the price of each stock
delta_stock = [0 for i in range(nb_stocks)]
line = lines[nb_stocks+5].split()
for s in range(nb_stocks):
delta_stock[s] = float(line[s])
print(delta_stock[s])
return expected_profit, nb_stocks, sigma_stocks, delta_stock
def main(instance_file, output_file, time_limit):
expected_profit, nb_stocks, sigma_stocks, delta_stock = read_instance(
instance_file)
with localsolver.LocalSolver() as ls:
#
# Declare the optimization model
#
model = ls.model
# Proportion of the portfolio invested in each stock
portfolio_stock = [model.float(0, 1) for s in range(nb_stocks)]
# Risk of the portfolio
risk = model.sum(portfolio_stock[s] * portfolio_stock[t] * sigma_stocks[s][t]
for t in range(nb_stocks) for s in range(nb_stocks))
# Return of the portfolio in percentage
profit = model.sum(portfolio_stock[s] * delta_stock[s]
for s in range(nb_stocks))
# All the portfolio is used
model.constraint(
model.sum(portfolio_stock[s] for s in range(nb_stocks)) == 1.0)
# The profit is at least the expected profit
model.constraint(profit >= expected_profit)
# Minimize the risk
model.minimize(risk)
model.close()
# Parameterize the solver
ls.param.time_limit = time_limit
ls.solve()
# Write the solution in a file with the following format:
# - for each stock, the proportion of the porfolio invested
# - the final profit in percentage of the portfolio
if output_file != None:
with open(output_file, "w") as f:
print("Solution written in file", output_file)
for s in range(nb_stocks):
proportion = portfolio_stock[s].value
f.write("Stock " + str(s+1) + ": " + str(round(proportion * 100, 1))
+ "%" + "\n")
f.write("Profit: " + str(round(profit.value, 4)) + "%")
if __name__ == '__main__':
if len(sys.argv) < 2:
print(
"Usage: python portfolio.py instance_file [output_file] [time_limit]")
sys.exit(1)
instance_file = sys.argv[1]
output_file = sys.argv[2] if len(sys.argv) >= 3 else None
time_limit = int(sys.argv[3]) if len(sys.argv) >= 4 else 60
main(instance_file, output_file, time_limit)
- Compilation / Execution (Windows)
- cl /EHsc portfolio.cpp -I%LS_HOME%\include /link %LS_HOME%\bin\localsolver125.libportfolio instances\small_01.txt
- Compilation / Execution (Linux)
- g++ portfolio.cpp -I/opt/localsolver_12_5/include -llocalsolver125 -lpthread -o portfolio./portfolio instances/small_01.txt
#include "localsolver.h"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <limits>
#include <numeric>
#include <vector>
using namespace localsolver;
class Portfolio {
private:
// Expected profit, in percentage of the portfolio
float expectedProfit;
// Number of stocks
int nbStocks;
// Covariance among the stocks
std::vector<std::vector<float>> sigmaStocks;
// Variation of the price of each stock
std::vector<float> deltaStock;
// LocalSolver
LocalSolver localsolver;
// Proportion of the portfolio invested in each stock
std::vector<LSExpression> portfolioStock;
// Return of the portfolio in percentage
LSExpression profit;
public:
Portfolio() : localsolver() {}
void readInstance(const std::string &fileName) {
std::ifstream infile;
infile.exceptions(std::ifstream::failbit | std::ifstream::badbit);
infile.open(fileName.c_str());
infile >> expectedProfit;
infile >> nbStocks;
for (int s = 0; s < nbStocks; s++) {
sigmaStocks.push_back(std::vector<float>(nbStocks, 0.0));
for (int t = 0; t < nbStocks; t++) {
infile >> sigmaStocks[s][t];
}
}
deltaStock = std::vector<float>(nbStocks, 0.0);
for (int s = 0; s < nbStocks; s++) {
infile >> deltaStock[s];
deltaStock[s] = deltaStock[s];
}
infile.close();
}
void solve(int timeLimit) {
// Declare the optimization model
LSModel model = localsolver.getModel();
// Proportion of the portfolio invested in each stock
portfolioStock.resize(nbStocks);
for (int s = 0; s < nbStocks; s++)
portfolioStock[s] = model.floatVar(0.0, 1.0);
// Risk of the portfolio
LSExpression risk = model.sum();
for (int s = 0; s < nbStocks; s++) {
for (int t = 0; t < nbStocks; t++) {
risk.addOperand(portfolioStock[s] * portfolioStock[t] * sigmaStocks[s][t]);
}
}
// Return of the portfolio in percentage
profit = model.sum();
for (int s = 0; s < nbStocks; s++) {
profit.addOperand(portfolioStock[s] * deltaStock[s]);
}
// All the portfolio is used
model.constraint(model.sum(portfolioStock.begin(), portfolioStock.end()) == 1.0);
// The profit is at least the expected profit
model.constraint(profit >= expectedProfit);
// Minimize the risk
model.minimize(risk);
model.close();
// Parameterize the solver
localsolver.getParam().setTimeLimit(timeLimit);
localsolver.solve();
}
/* Write the solution in a file with the following format:
- for each stock, the proportion of the porfolio invested
- the final profit in percentage of the portfolio */
void writeSolution(const std::string &fileName) {
std::ofstream outfile(fileName.c_str());
if (!outfile.is_open()) {
std::cerr << "File " << fileName << " cannot be opened." << std::endl;
exit(1);
}
std::cout << "Solution written in file " << fileName << std::endl;
for (unsigned int s = 0; s < nbStocks; ++s) {
float proportion = portfolioStock[s].getDoubleValue();
outfile << "Stock " << s + 1 << ": " << round(proportion * 1000) / 10 << "%" << std::endl;
}
outfile << "Profit: " << profit.getDoubleValue() << "%" << std::endl;
outfile.close();
}
};
int main(int argc, char **argv) {
if (argc < 2) {
std::cout << "Usage: portfolio instanceFile [outputFile] [timeLimit]" << std::endl;
exit(1);
}
const char *instanceFile = argv[1];
const char *outputFile = argc > 2 ? argv[2] : NULL;
const char *strTimeLimit = argc > 3 ? argv[3] : "60";
Portfolio model;
try {
model.readInstance(instanceFile);
const int timeLimit = atoi(strTimeLimit);
model.solve(timeLimit);
if (outputFile != NULL)
model.writeSolution(outputFile);
return 0;
} catch (const std::exception &e) {
std::cerr << "An error occurred: " << e.what() << std::endl;
return 1;
}
}
- Compilation / Execution (Windows)
- copy %LS_HOME%\bin\localsolvernet.dll .csc Portfolio.cs /reference:localsolvernet.dllPortfolio instances\small_01.txt
using System;
using System.IO;
using System.Linq;
using System.Globalization;
using localsolver;
public class Portfolio : IDisposable
{
// Expected profit, in percentage of the portfolio
private float expectedProfit;
// Number of stocks
private int nbStocks;
// Covariance among the stocks
private float[][] sigmaStocks;
// Variation of the price of each stock
private float[] deltaStock;
// LocalSolver
private LocalSolver localsolver;
// Proportion of the portfolio invested in each stock
private LSExpression[] portfolioStock;
// Return of the portfolio in percentage
private LSExpression profit;
public Portfolio()
{
localsolver = new LocalSolver();
}
public void ReadInstance(string fileName)
{
using (StreamReader input = new StreamReader(fileName))
{
char[] separators = new char[] { '\t', ' ' };
string[] splitted = input
.ReadLine()
.Split(separators, StringSplitOptions.RemoveEmptyEntries);
expectedProfit = float.Parse(splitted[0], CultureInfo.InvariantCulture);
input.ReadLine();
splitted = input
.ReadLine()
.Split(separators, StringSplitOptions.RemoveEmptyEntries);
nbStocks = int.Parse(splitted[0]);
sigmaStocks = new float[nbStocks][];
input.ReadLine();
for (int s = 0; s < nbStocks; ++s)
{
sigmaStocks[s] = new float[nbStocks];
splitted = input
.ReadLine()
.Split(separators, StringSplitOptions.RemoveEmptyEntries);
for (int t = 0; t < nbStocks; ++t)
sigmaStocks[s][t] = float.Parse(splitted[t], CultureInfo.InvariantCulture);
}
input.ReadLine();
splitted = input
.ReadLine()
.Split(separators, StringSplitOptions.RemoveEmptyEntries);
deltaStock = new float[nbStocks];
for(int s = 0; s < nbStocks; ++s)
deltaStock[s] = float.Parse(splitted[s], CultureInfo.InvariantCulture);
}
}
public void Dispose()
{
localsolver.Dispose();
}
public void Solve(int timeLimit)
{
// Declare the optimization model
LSModel model = localsolver.GetModel();
// Proportion of the portfolio invested in each stock
portfolioStock = new LSExpression[nbStocks];
for(int s = 0; s < nbStocks; s++)
portfolioStock[s] = model.Float(0.0, 1.0);
// Risk of the portfolio
LSExpression risk = model.Sum();
for(int s = 0; s < nbStocks; s++)
{
for(int t = 0; t < nbStocks; t++)
risk.AddOperand(portfolioStock[s] * portfolioStock[t] * sigmaStocks[s][t]);
}
// Return of the portfolio in percentage
profit = model.Sum();
for(int s = 0; s < nbStocks; s++)
profit.AddOperand(portfolioStock[s] * deltaStock[s]);
// All the portfolio is used
model.Constraint(model.Sum(portfolioStock) == 1.0);
// The profit is at least the expected profit
model.Constraint(profit >= expectedProfit);
// Minimize the risk
model.Minimize(risk);
model.Close();
// Parameterize the solver
localsolver.GetParam().SetTimeLimit(timeLimit);
localsolver.Solve();
}
/* Write the solution in a file with the following format:
* - for each stock, the proportion of the porfolio invested
- the final profit in percentage of the portfolio */
public void WriteSolution(string fileName)
{
using (StreamWriter output = new StreamWriter(fileName))
{
Console.WriteLine("Solution written in file " + fileName);
for (int s = 1; s <= nbStocks; ++s)
{
double proportion = portfolioStock[s - 1].GetDoubleValue();
output.WriteLine("Stock " + s + ": " +
Math.Round(proportion * 100, 1) + "%");
}
output.WriteLine("Profit: " + Math.Round(profit.GetDoubleValue(), 4) + "%");
}
}
public static void Main(string[] args)
{
if (args.Length < 1)
{
Console.WriteLine("Usage: Portfolio instanceFile [outputFile] [timeLimit]");
System.Environment.Exit(1);
}
string instanceFile = args[0];
string outputFile = args.Length > 1 ? args[1] : null;
string strTimeLimit = args.Length > 2 ? args[2] : "60";
using (Portfolio model = new Portfolio())
{
model.ReadInstance(instanceFile);
model.Solve(int.Parse(strTimeLimit));
if (outputFile != null)
model.WriteSolution(outputFile);
}
}
}
- Compilation / Execution (Windows)
- javac Portfolio.java -cp %LS_HOME%\bin\localsolver.jarjava -cp %LS_HOME%\bin\localsolver.jar;. Portfolio instances\small_01.txt
- Compilation / Execution (Linux)
- javac Portfolio.java -cp /opt/localsolver_12_5/bin/localsolver.jarjava -cp /opt/localsolver_12_5/bin/localsolver.jar:. Portfolio instances/small_01.txt
import java.io.File;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Scanner;
import localsolver.LSExpression;
import localsolver.LSModel;
import localsolver.LocalSolver;
public class Portfolio {
// Expected profit, in percentage of the portfolio
private float expectedProfit;
// Number of stocks
private int nbStocks;
// Covariance among the stocks
private float[][] sigmaStocks;
// Variation of the price of each stock
private float[] deltaStock;
// LocalSolver
private final LocalSolver localsolver;
// Proportion of the portfolio invested in each stock
private LSExpression[] portfolioStock;
// Return of the portfolio in percentage
private LSExpression profit;
public Portfolio(LocalSolver localsolver) throws IOException {
this.localsolver = localsolver;
}
public void readInstance(String fileName) throws IOException {
try (Scanner input = new Scanner(new File(fileName))) {
expectedProfit = input.nextFloat();
nbStocks = input.nextInt();
sigmaStocks = new float[nbStocks][];
for (int s = 0; s < nbStocks; ++s) {
sigmaStocks[s] = new float[nbStocks];
for (int t = 0; t < nbStocks; ++t) {
sigmaStocks[s][t] = input.nextFloat();
}
}
deltaStock = new float[nbStocks];
for (int s = 0; s < nbStocks; ++s) {
deltaStock[s] = input.nextFloat();
}
}
}
public void solve(int timeLimit) {
// Declare the optimization model
LSModel model = localsolver.getModel();
// Proportion of the portfolio invested in each stock
portfolioStock = new LSExpression[nbStocks];
for (int s = 0; s < nbStocks; s++) {
portfolioStock[s] = model.floatVar(0.0, 1.0);
}
// Risk of the portfolio
LSExpression risk = model.sum();
for (int s = 0; s < nbStocks; s++) {
for (int t = 0; t < nbStocks; t++) {
LSExpression sigmaST = model.createConstant(sigmaStocks[s][t]);
risk.addOperand(model.prod(portfolioStock[s], portfolioStock[t], sigmaST));
}
}
// Return of the portfolio in percentage
profit = model.sum();
for (int s = 0; s < nbStocks; s++) {
LSExpression deltaS = model.createConstant(deltaStock[s]);
profit.addOperand(model.prod(portfolioStock[s], deltaS));
}
// All the portfolio is used
LSExpression one = model.createConstant(1.0);
model.constraint(model.eq(model.sum(portfolioStock), one));
// The profit is at least the expected profit
model.constraint(model.geq(profit, expectedProfit));
// Minimize the risk
model.minimize(risk);
model.close();
// Parameterize the solver
localsolver.getParam().setTimeLimit(timeLimit);
localsolver.solve();
}
/*
* Write the solution in a file with the following format:
* - for each stock, the proportion of the porfolio invested
* - the final profit in percentage of the portfolio
*/
public void writeSolution(String fileName) throws IOException {
try (PrintWriter output = new PrintWriter(fileName)) {
System.out.println("Solution written in file " + fileName);
for (int s = 1; s <= nbStocks; ++s) {
output.write("Stock " + s + ": " + portfolioStock[s - 1].getDoubleValue() * 100 + "% \n");
}
output.write("Profit: " + profit.getDoubleValue() + "% \n");
}
}
public static void main(String[] args) {
if (args.length < 1) {
System.out.println("Usage: java Portfolio instanceFile [outputFile] [timeLimit]");
System.exit(1);
}
String instanceFile = args[0];
String outputFile = args.length > 1 ? args[1] : null;
String strTimeLimit = args.length > 2 ? args[2] : "60";
try (LocalSolver localsolver = new LocalSolver()) {
Portfolio model = new Portfolio(localsolver);
model.readInstance(instanceFile);
model.solve(Integer.parseInt(strTimeLimit));
if (outputFile != null) {
model.writeSolution(outputFile);
}
} catch (Exception ex) {
System.err.println(ex);
ex.printStackTrace();
System.exit(1);
}
}
}