This page is for an old version of Hexaly Optimizer.
We recommend that you update your version and read the documentation for the
latest stable release.
Knapsack¶
Principles learned¶
Create a generic model that uses data
Read an instance from a file
Write the solution in a file
Problem¶
The knapsack problem is defined as follows: given a set of items, each with a weight and a value, determine a subset of items in such a way that their total weight is less than a given bound and their total value is as large as possible. This problem is hard to solve in theory.
Download the exampleProgram¶
Note that the way to model is exactly the same than in integer programming: for each item, a 0-1 decision variable is defined which is equal to 1 if the item belongs to the knapsack and 0 otherwise.
Knapsack instances involving millions of objects can be tackled using Hexaly Optimizer .
- Execution:
- localsolver knapsack.lsp inFileName=instances/kp_100_1.in [lsTimeLimit=] [solFileName=]
use io;
/* Read instance data */
function input() {
local usage = "Usage: localsolver knapsack.lsp "
+ "inFileName=inputFile [solFileName=outputFile] [lsTimeLimit=timeLimit]";
if (inFileName == nil) throw usage;
local inFile = io.openRead(inFileName);
nbItems = inFile.readInt();
weights[i in 0...nbItems] = inFile.readInt();
prices[i in 0...nbItems] = inFile.readInt();
knapsackBound = inFile.readInt();
}
/* Declare the optimization model */
function model() {
// Decision variables x[i]
x[i in 0...nbItems] <- bool();
// Weight constraint
knapsackWeight <- sum[i in 0...nbItems](weights[i] * x[i]);
constraint knapsackWeight <= knapsackBound;
// Maximize value
knapsackValue <- sum[i in 0...nbItems](prices[i] * x[i]);
maximize knapsackValue;
}
/* Parametrize the solver */
function param() {
if (lsTimeLimit == nil) lsTimeLimit = 20;
}
/* Write the solution in a file */
function output() {
if (solFileName == nil) return;
local solFile = io.openWrite(solFileName);
solFile.println(knapsackValue.value);
for [i in 0...nbItems : x[i].value == 1]
solFile.print(i + " ");
solFile.println();
}
- Execution (Windows)
- set PYTHONPATH=%LS_HOME%\bin\pythonpython knapsack.py instances\kp_100_1.in
- Execution (Linux)
- export PYTHONPATH=/opt/localsolver_12_5/bin/pythonpython knapsack.py instances/kp_100_1.in
import localsolver
import sys
if len(sys.argv) < 2:
print("Usage: python knapsack.py inputFile [outputFile] [timeLimit]")
sys.exit(1)
def read_integers(filename):
with open(filename) as f:
return [int(elem) for elem in f.read().split()]
with localsolver.LocalSolver() as ls:
#
# Read instance data
#
file_it = iter(read_integers(sys.argv[1]))
# Number of items
nb_items = next(file_it)
# Items properties
weights = [next(file_it) for i in range(nb_items)]
values = [next(file_it) for i in range(nb_items)]
# Knapsack bound
knapsack_bound = next(file_it)
#
# Declare the optimization model
#
model = ls.model
# Decision variables x[i]
x = [model.bool() for i in range(nb_items)]
# Weight constraint
knapsack_weight = model.sum(x[i] * weights[i] for i in range(nb_items))
model.constraint(knapsack_weight <= knapsack_bound)
# Maximize value
knapsack_value = model.sum(x[i] * values[i] for i in range(nb_items))
model.maximize(knapsack_value)
model.close()
# Parameterize the solver
if len(sys.argv) >= 4:
ls.param.time_limit = int(sys.argv[3])
else:
ls.param.time_limit = 20
ls.solve()
#
# Write the solution in a file
#
if len(sys.argv) >= 3:
with open(sys.argv[2], 'w') as f:
f.write("%d\n" % knapsack_value.value)
for i in range(nb_items):
if x[i].value != 1:
continue
f.write("%d " % i)
f.write("\n")
- Compilation / Execution (Windows)
- cl /EHsc knapsack.cpp -I%LS_HOME%\include /link %LS_HOME%\bin\localsolver125.libknapsack instances\kp_100_1.in
- Compilation / Execution (Linux)
- g++ knapsack.cpp -I/opt/localsolver_12_5/include -llocalsolver125 -lpthread -o knapsack./knapsack instances/kp_100_1.in
#include "localsolver.h"
#include <fstream>
#include <iostream>
#include <vector>
using namespace localsolver;
using namespace std;
class Knapsack {
public:
// Number of items
int nbItems;
// Items properties
vector<int> weights;
vector<int> values;
// Knapsack bound
int knapsackBound;
// LocalSolver
LocalSolver localsolver;
// Decision variables
vector<LSExpression> x;
// Objective
LSExpression knapsackValue;
/* Read instance data */
void readInstance(const string& fileName) {
ifstream infile;
infile.exceptions(ifstream::failbit | ifstream::badbit);
infile.open(fileName.c_str());
infile >> nbItems;
weights.resize(nbItems);
for (int i = 0; i < nbItems; ++i)
infile >> weights[i];
values.resize(nbItems);
for (int i = 0; i < nbItems; ++i)
infile >> values[i];
infile >> knapsackBound;
}
void solve(int limit) {
// Declare the optimization model
LSModel model = localsolver.getModel();
// Decision variables x[i]
x.resize(nbItems);
for (int i = 0; i < nbItems; ++i) {
x[i] = model.boolVar();
}
// Weight constraint
LSExpression knapsackWeight = model.sum();
for (int i = 0; i < nbItems; ++i) {
LSExpression itemWeight = x[i] * weights[i];
knapsackWeight.addOperand(itemWeight);
}
model.constraint(knapsackWeight <= knapsackBound);
// Maximize value
knapsackValue = model.sum();
for (int i = 0; i < nbItems; ++i) {
LSExpression itemValue = x[i] * values[i];
knapsackValue.addOperand(itemValue);
}
model.maximize(knapsackValue);
model.close();
// Parametrize the solver
localsolver.getParam().setTimeLimit(limit);
localsolver.solve();
}
/* Write the solution in a file */
void writeSolution(const string& fileName) {
ofstream outfile;
outfile.exceptions(ofstream::failbit | ofstream::badbit);
outfile.open(fileName.c_str());
outfile << knapsackValue.getValue() << endl;
for (int i = 0; i < nbItems; ++i) {
if (x[i].getValue() == 1)
outfile << i << " ";
}
outfile << endl;
}
};
int main(int argc, char** argv) {
if (argc < 2) {
cerr << "Usage: knapsack inputFile [outputFile] [timeLimit]" << endl;
return 1;
}
const char* instanceFile = argv[1];
const char* solFile = argc > 2 ? argv[2] : NULL;
const char* strTimeLimit = argc > 3 ? argv[3] : "20";
try {
Knapsack model;
model.readInstance(instanceFile);
model.solve(atoi(strTimeLimit));
if (solFile != NULL)
model.writeSolution(solFile);
return 0;
} catch (const exception& e) {
cerr << "An error occurred: " << e.what() << endl;
return 1;
}
}
- Compilation / Execution (Windows)
- copy %LS_HOME%\bin\localsolvernet.dll .csc Knapsack.cs /reference:localsolvernet.dllKnapsack instances\kp_100_1.in
using System;
using System.IO;
using System.Collections.Generic;
using localsolver;
public class Knapsack : IDisposable
{
// Number of items
int nbItems;
// Items properties
int[] weights;
int[] values;
// Knapsack bound
int knapsackBound;
// LocalSolver
LocalSolver localsolver;
// LS Program variables
LSExpression[] x;
// Objective
LSExpression knapsackValue;
public Knapsack()
{
localsolver = new LocalSolver();
}
/* Read instance data */
void ReadInstance(string fileName)
{
using (StreamReader input = new StreamReader(fileName))
{
nbItems = int.Parse(input.ReadLine());
weights = new int[nbItems];
values = new int[nbItems];
string[] splittedWeights = input.ReadLine().Split(' ');
for (int i = 0; i < nbItems; ++i)
weights[i] = int.Parse(splittedWeights[i]);
string[] splittedValues = input.ReadLine().Split(' ');
for (int i = 0; i < nbItems; ++i)
values[i] = int.Parse(splittedValues[i]);
knapsackBound = int.Parse(input.ReadLine());
}
}
public void Dispose()
{
if (localsolver != null)
localsolver.Dispose();
}
void Solve(int limit)
{
// Declare the optimization model
LSModel model = localsolver.GetModel();
// Decision variables x[i]
x = new LSExpression[nbItems];
for (int i = 0; i < nbItems; ++i)
x[i] = model.Bool();
// Weight constraint
LSExpression knapsackWeight = model.Sum();
for (int i = 0; i < nbItems; ++i)
knapsackWeight.AddOperand(x[i] * weights[i]);
model.Constraint(knapsackWeight <= knapsackBound);
// Maximize value
knapsackValue = model.Sum();
for (int i = 0; i < nbItems; ++i)
knapsackValue.AddOperand(x[i] * values[i]);
model.Maximize(knapsackValue);
model.Close();
// Parametrize the solver
localsolver.GetParam().SetTimeLimit(limit);
localsolver.Solve();
}
/* Write the solution in a file */
void WriteSolution(string fileName)
{
using (StreamWriter output = new StreamWriter(fileName))
{
output.WriteLine(knapsackValue.GetValue());
for (int i = 0; i < nbItems; ++i)
{
if (x[i].GetValue() == 1)
output.Write(i + " ");
}
output.WriteLine();
}
}
public static void Main(string[] args)
{
if (args.Length < 1)
{
Console.WriteLine("Usage: Knapsack inputFile [solFile] [timeLimit]");
Environment.Exit(1);
}
string instanceFile = args[0];
string outputFile = args.Length > 1 ? args[1] : null;
string strTimeLimit = args.Length > 2 ? args[2] : "20";
using (Knapsack model = new Knapsack())
{
model.ReadInstance(instanceFile);
model.Solve(int.Parse(strTimeLimit));
if (outputFile != null)
model.WriteSolution(outputFile);
}
}
}
- Compilation / Execution (Windows)
- javac Knapsack.java -cp %LS_HOME%\bin\localsolver.jarjava -cp %LS_HOME%\bin\localsolver.jar;. Knapsack instances\kp_100_1.in
- Compilation / Execution (Linux)
- javac Knapsack.java -cp /opt/localsolver_12_5/bin/localsolver.jarjava -cp /opt/localsolver_12_5/bin/localsolver.jar:. Knapsack instances/kp_100_1.in
import java.util.*;
import java.io.*;
import localsolver.*;
public class Knapsack {
// Number of items
private int nbItems;
// Items properties
private int[] weights;
private int[] values;
// Knapsack bound
private int knapsackBound;
// LocalSolver
private final LocalSolver localsolver;
// LS Program variables
private LSExpression[] x;
// Objective
private LSExpression knapsackValue;
private Knapsack(LocalSolver localsolver) {
this.localsolver = localsolver;
}
/* Read instance data */
private void readInstance(String fileName) throws IOException {
try (Scanner input = new Scanner(new File(fileName))) {
nbItems = input.nextInt();
weights = new int[nbItems];
for (int i = 0; i < nbItems; ++i) {
weights[i] = input.nextInt();
}
values = new int[nbItems];
for (int i = 0; i < nbItems; ++i) {
values[i] = input.nextInt();
}
knapsackBound = input.nextInt();
}
}
private void solve(int limit) {
// Declare the optimization model
LSModel model = localsolver.getModel();
// Decision variables x[i]
x = new LSExpression[nbItems];
for (int i = 0; i < nbItems; ++i) {
x[i] = model.boolVar();
}
// Weight constraint
LSExpression knapsackWeight = model.sum();
for (int i = 0; i < nbItems; ++i) {
LSExpression itemWeight = model.prod(x[i], weights[i]);
knapsackWeight.addOperand(itemWeight);
}
model.constraint(model.leq(knapsackWeight, knapsackBound));
// Maximize value
knapsackValue = model.sum();
for (int i = 0; i < nbItems; ++i) {
LSExpression itemValue = model.prod(x[i], values[i]);
knapsackValue.addOperand(itemValue);
}
model.maximize(knapsackValue);
model.close();
// Parametrize the solver
localsolver.getParam().setTimeLimit(limit);
localsolver.solve();
}
/* Write the solution in a file */
private void writeSolution(String fileName) throws IOException {
try (PrintWriter output = new PrintWriter(fileName)) {
output.println(knapsackValue.getValue());
for (int i = 0; i < nbItems; ++i)
if (x[i].getValue() == 1)
output.print(i + " ");
output.println();
}
}
public static void main(String[] args) {
if (args.length < 1) {
System.err.println("Usage: java Knapsack inputFile [outputFile] [timeLimit]");
System.exit(1);
}
String instanceFile = args[0];
String outputFile = args.length > 1 ? args[1] : null;
String strTimeLimit = args.length > 2 ? args[2] : "20";
try (LocalSolver localsolver = new LocalSolver()) {
Knapsack model = new Knapsack(localsolver);
model.readInstance(instanceFile);
model.solve(Integer.parseInt(strTimeLimit));
if (outputFile != null) {
model.writeSolution(outputFile);
}
} catch (Exception ex) {
System.err.println(ex);
ex.printStackTrace();
System.exit(1);
}
}
}