Aircraft Landing¶
Principles learned¶
- Use a lambda expression to define a recursive array
- Use a list variable to model a sequencing problem
- Access a multi-dimensional array with an “at” operator
- Use ternary conditions
Problem¶
In the aircraft landing problem, landing times of a set of planes have to be scheduled. Each plane can land in a predetermined time window around a target time. The objective is to minimize the “cost penalty” due to landings before or after target times. A separation time has to be respected between two successive planes.
Download the exampleData¶
The instances provided come from the OR-Library, J.E. Beasly.
The format of the data files is as follows:
First line: number of planes and freeze time.
From the second line, for each plane i:
- Appearance time
- Earliest time of landing
- Target time of landing
- Latest time of landing
- Penalty cost per unit of time for landing before target
- Penalty cost per unit of time for landing after target
- For each plane j: separation time required after i lands before j can land
Only the static problem is presented here, so the appearance time variables and the freeze time variable are not used.
Program¶
This LocalSolver model defines a landing order as a list variable. The i-th element of the list corresponds to the index of the i-th plane to land. To ensure that all planes are scheduled, the size of the list variable is constrained to be equal to the number of planes.
Another decision variable is introduced: the preferred landing time for each plane. A plane should land after the target time only if it has to wait after the landing of the preceding plane. Thus, the preferred landing time of a plane is between the earliest landing time and the target time.
The landing time of each plane is defined by a recursive function as the maximum between the preferred landing time and the first time the plane can land, respecting the separation time after the preceding plane.
A last constraint is added to ensure that the landing times respect the separation time with all the previous planes, and not only with the one immediately preceding.
The objective is to minimize the penalty cost due to the earliness or the lateness of each plane. To compute this cost for each plane, a ternary condition is used to select either the earliness cost or the lateness cost depending on the difference between the landing time and the target time.
- Execution:
- localsolver aircraft_landing.lsp inFileName=instances/airland1.txt [lsTimeLimit=] [solFileName=]
use io;
/* Read instance data */
function input() {
local usage = "Usage: localsolver aircraft_landing.lsp "
+ "inFileName=inputFile [lsTimeLimit=timeLimit]";
if (inFileName == nil) throw usage;
local inFile = io.openRead(inFileName);
nbPlanes = inFile.readInt();
inFile.readInt(); // Skip freezeTime value
for [p in 0...nbPlanes] {
inFile.readInt(); // Skip appearanceTime values
earliestTime[p] = inFile.readInt();
targetTime[p] = inFile.readInt();
latestTime[p] = inFile.readInt();
earlinessCost[p] = inFile.readDouble();
tardinessCost[p] = inFile.readDouble();
separationTime[p][j in 0...nbPlanes] = inFile.readInt();
}
inFile.close();
}
/* Declare the optimization model */
function model() {
// A list variable: landingOrder[i] is the index of the ith plane to land
landingOrder <- list(nbPlanes);
// All planes must be scheduled
constraint count(landingOrder) == nbPlanes;
// Int variable: preferred landing time for each plane
preferredTime[p in 0...nbPlanes] <- int(earliestTime[p], targetTime[p]);
// Landing time for each plane
landingTime <- array(0...nbPlanes, (p, prev) => max(preferredTime[landingOrder[p]],
p > 0 ? prev + separationTime[landingOrder[p - 1]][landingOrder[p]] : 0));
// Landing times must respect the separation time with every previous plane
for [p in 1...nbPlanes] {
constraint landingTime[p] >= max[previousPlane in 0...p](landingTime[previousPlane]
+ separationTime[landingOrder[previousPlane]][landingOrder[p]]);
}
for [p in 0...nbPlanes] {
local planeIndex <- landingOrder[p];
// Constraint on latest landing time
constraint landingTime[p] <= latestTime[planeIndex];
// Cost for each plane
cost[p] <- (landingTime[p] < targetTime[planeIndex] ?
earlinessCost[planeIndex] :
tardinessCost[planeIndex]) * abs(landingTime[p] - targetTime[planeIndex]);
}
// Minimize the total cost
totalCost <- sum[p in 0...nbPlanes] (cost[p]);
minimize totalCost;
}
/* Parameterize the solver */
function param() {
if (lsTimeLimit == nil) lsTimeLimit = 20;
}
/* Write the solution in a file with the following format:
* - 1st line: value of the objective;
* - 2nd line: for each position p, index of plane at position p. */
function output() {
if (solFileName == nil) return;
local solFile = io.openWrite(solFileName);
solFile.println(totalCost.isUndefined() ? "(invalid)" : totalCost.value);
for [p in landingOrder.value]
solFile.print(p, " ");
solFile.println();
}
- Execution (Windows)
- set PYTHONPATH=%LS_HOME%\bin\pythonpython aircraft_landing.py instances\airland1.txt
- Execution (Linux)
- export PYTHONPATH=/opt/localsolver_12_5/bin/pythonpython aircraft_landing.py instances/airland1.txt
import localsolver
import sys
def read_elem(filename):
with open(filename) as f:
return [str(elem) for elem in f.read().split()]
#
# Read instance data
#
def read_instance(instance_file):
file_it = iter(read_elem(instance_file))
nb_planes = int(next(file_it))
next(file_it) # Skip freezeTime value
earliest_time_data = []
target_time_data = []
latest_time_data = []
earliness_cost_data = []
tardiness_cost_data = []
separation_time_data = []
for p in range(nb_planes):
next(file_it) # Skip appearanceTime values
earliest_time_data.append(int(next(file_it)))
target_time_data.append(int(next(file_it)))
latest_time_data.append(int(next(file_it)))
earliness_cost_data.append(float(next(file_it)))
tardiness_cost_data.append(float(next(file_it)))
separation_time_data.append([None] * nb_planes)
for pp in range(nb_planes):
separation_time_data[p][pp] = int(next(file_it))
return nb_planes, earliest_time_data, target_time_data, latest_time_data, \
earliness_cost_data, tardiness_cost_data, separation_time_data
def get_min_landing_time(p, prev, model, separation_time, landing_order):
return model.iif(
p > 0,
prev + model.at(separation_time, landing_order[p - 1], landing_order[p]),
0)
def main(instance_file, output_file, time_limit):
nb_planes, earliest_time_data, target_time_data, latest_time_data, \
earliness_cost_data, tardiness_cost_data, separation_time_data = \
read_instance(instance_file)
with localsolver.LocalSolver() as ls:
#
# Declare the optimization model
#
model = ls.model
# A list variable: landingOrder[i] is the index of the ith plane to land
landing_order = model.list(nb_planes)
# All planes must be scheduled
model.constraint(model.count(landing_order) == nb_planes)
# Create LocalSolver arrays to be able to access them with an "at" operator
target_time = model.array(target_time_data)
latest_time = model.array(latest_time_data)
earliness_cost = model.array(earliness_cost_data)
tardiness_cost = model.array(tardiness_cost_data)
separation_time = model.array(separation_time_data)
# Int variable: preferred landing time for each plane
preferred_time_vars = [model.int(earliest_time_data[p], target_time_data[p])
for p in range(nb_planes)]
preferred_time = model.array(preferred_time_vars)
# Landing time for each plane
landing_time_lambda = model.lambda_function(
lambda p, prev:
model.max(
preferred_time[landing_order[p]],
get_min_landing_time(p, prev, model, separation_time, landing_order)))
landing_time = model.array(model.range(0, nb_planes), landing_time_lambda)
# Landing times must respect the separation time with every previous plane
for p in range(1, nb_planes):
last_separation_end = [
landing_time[previous_plane]
+ model.at(
separation_time,
landing_order[previous_plane],
landing_order[p])
for previous_plane in range(p)]
model.constraint(landing_time[p] >= model.max(last_separation_end))
total_cost = model.sum()
for p in range(nb_planes):
plane_index = landing_order[p]
# Constraint on latest landing time
model.constraint(landing_time[p] <= latest_time[plane_index])
# Cost for each plane
difference_to_target_time = abs(landing_time[p] - target_time[plane_index])
unit_cost = model.iif(
landing_time[p] < target_time[plane_index],
earliness_cost[plane_index],
tardiness_cost[plane_index])
total_cost.add_operand(unit_cost * difference_to_target_time)
# Minimize the total cost
model.minimize(total_cost)
model.close()
# Parameterize the solver
ls.param.time_limit = time_limit
ls.solve()
#
# Write the solution in a file with the following format:
# - 1st line: value of the objective;
# - 2nd line: for each position p, index of plane at position p.
#
if output_file is not None:
with open(output_file, 'w') as f:
f.write("%d\n" % total_cost.value)
for p in landing_order.value:
f.write("%d " % p)
f.write("\n")
if __name__ == '__main__':
if len(sys.argv) < 2:
print("Usage: python aircraft_landing.py instance_file [output_file] [time_limit]")
sys.exit(1)
instance_file = sys.argv[1]
output_file = sys.argv[2] if len(sys.argv) >= 3 else None
time_limit = int(sys.argv[3]) if len(sys.argv) >= 4 else 20
main(instance_file, output_file, time_limit)
- Compilation / Execution (Windows)
- cl /EHsc aircraft_landing.cpp -I%LS_HOME%\include /link %LS_HOME%\bin\localsolver125.libaircraft_landing instances\airland1.txt
- Compilation / Execution (Linux)
- g++ aircraft_landing.cpp -I/opt/localsolver_12_5/include -llocalsolver125 -lpthread -o aircraft_landing./aircraft_landing instances/airland1.txt
#include "localsolver.h"
#include <fstream>
#include <iostream>
#include <string.h>
#include <vector>
using namespace localsolver;
using namespace std;
class AircraftLanding {
private:
// Data from the problem
int nbPlanes;
int tmp;
vector<int> earliestTimeData;
vector<int> targetTimeData;
vector<int> latestTimeData;
vector<double> earlinessCostData;
vector<double> latenessCostData;
vector<vector<int>> separationTimeData;
// LocalSolver
LocalSolver localsolver;
// Decision variables
LSExpression landingOrder;
vector<LSExpression> preferredTimeVars;
// Landing time for each plane
LSExpression landingTime;
// Objective
LSExpression totalCost;
public:
/* Read instance data */
void readInstance(const string& fileName) {
ifstream infile;
infile.exceptions(ifstream::failbit | ifstream::badbit);
infile.open(fileName.c_str());
infile >> nbPlanes;
infile >> tmp; // Skip freezeTime value
earliestTimeData.resize(nbPlanes);
targetTimeData.resize(nbPlanes);
latestTimeData.resize(nbPlanes);
earlinessCostData.resize(nbPlanes);
latenessCostData.resize(nbPlanes);
separationTimeData.resize(nbPlanes, vector<int>(nbPlanes));
preferredTimeVars.resize(nbPlanes);
for (int i = 0; i < nbPlanes; ++i) {
infile >> tmp; // Skip appearanceTime values
infile >> earliestTimeData[i];
infile >> targetTimeData[i];
infile >> latestTimeData[i];
infile >> earlinessCostData[i];
infile >> latenessCostData[i];
for (int j = 0; j < nbPlanes; ++j) {
infile >> separationTimeData[i][j];
}
}
infile.close();
}
LSExpression getMinLandingTime(LSExpression p, LSExpression prev, LSModel model, LSExpression separationTime) {
return model.iif(p > 0, prev + model.at(separationTime, landingOrder[p - 1], landingOrder[p]), 0);
}
void solve(int limit) {
// Declare the optimization model
LSModel model = localsolver.getModel();
// A list variable: landingOrder[i] is the index of the ith plane to land
landingOrder = model.listVar(nbPlanes);
// All planes must be scheduled
model.constraint(model.count(landingOrder) == nbPlanes);
// Create LocalSolver arrays to be able to access them with "at" operators
LSExpression targetTime = model.array(targetTimeData.begin(), targetTimeData.end());
LSExpression latestTime = model.array(latestTimeData.begin(), latestTimeData.end());
LSExpression earlinessCost = model.array(earlinessCostData.begin(), earlinessCostData.end());
LSExpression latenessCost = model.array(latenessCostData.begin(), latenessCostData.end());
LSExpression separationTime = model.array();
for (int i = 0; i < nbPlanes; ++i) {
LSExpression row = model.array(separationTimeData[i].begin(), separationTimeData[i].end());
separationTime.addOperand(row);
}
// Int variables: preferred time for each plane
for (int p = 0; p < nbPlanes; ++p) {
preferredTimeVars[p] = model.intVar(earliestTimeData[p], targetTimeData[p]);
}
LSExpression preferredTime = model.array(preferredTimeVars.begin(), preferredTimeVars.end());
// Landing time for each plane
LSExpression landingTimeLambda = model.createLambdaFunction([&](LSExpression p, LSExpression prev) {
return model.max(preferredTime[landingOrder[p]], getMinLandingTime(p, prev, model, separationTime));
});
landingTime = model.array(model.range(0, nbPlanes), landingTimeLambda);
// Landing times must respect the separation time with every previous plane
for (int p = 1; p < nbPlanes; ++p) {
LSExpression lastSeparationEnd = model.max();
for (int previousPlane = 0; previousPlane < p; ++previousPlane) {
lastSeparationEnd.addOperand(landingTime[previousPlane] +
model.at(separationTime, landingOrder[previousPlane], landingOrder[p]));
}
model.constraint(landingTime[p] >= lastSeparationEnd);
}
totalCost = model.sum();
for (int p = 0; p < nbPlanes; ++p) {
// Constraint on latest landing time
LSExpression planeIndex = landingOrder[p];
model.constraint(landingTime[p] <= latestTime[planeIndex]);
// Cost for each plane
LSExpression unitCost =
model.iif(landingTime[p] < targetTime[planeIndex], earlinessCost[planeIndex], latenessCost[planeIndex]);
LSExpression differenceToTargetTime = model.abs(landingTime[p] - targetTime[planeIndex]);
totalCost.addOperand(unitCost * differenceToTargetTime);
}
// Minimize the total cost
model.minimize(totalCost);
model.close();
// Parameterize the solver
localsolver.getParam().setTimeLimit(limit);
localsolver.solve();
}
/* Write the solution in a file with the following format:
* - 1st line: value of the objective;
* - 2nd line: for each position p, index of plane at position p. */
void writeSolution(const string& fileName) {
ofstream outfile;
outfile.exceptions(ofstream::failbit | ofstream::badbit);
outfile.open(fileName.c_str());
outfile << totalCost.getDoubleValue() << endl;
LSCollection landingOrderCollection = landingOrder.getCollectionValue();
for (int i = 0; i < nbPlanes; ++i) {
outfile << landingOrderCollection[i] << " ";
}
outfile << endl;
}
};
int main(int argc, char** argv) {
if (argc < 2) {
cerr << "Usage: aircraft_landing inputFile [outputFile] [timeLimit]" << endl;
return 1;
}
const char* instanceFile = argv[1];
const char* solFile = argc > 2 ? argv[2] : NULL;
const char* strTimeLimit = argc > 3 ? argv[3] : "20";
try {
AircraftLanding model;
model.readInstance(instanceFile);
model.solve(atoi(strTimeLimit));
if (solFile != NULL)
model.writeSolution(solFile);
return 0;
} catch (const exception& e) {
cerr << "An error occurred: " << e.what() << endl;
return 1;
}
}
- Compilation / Execution (Windows)
- copy %LS_HOME%\bin\localsolvernet.dll .csc AircraftLanding.cs /reference:localsolvernet.dllAircraftLanding instances\airland1.txt
using System;
using System.IO;
using System.Globalization;
using localsolver;
public class AircraftLanding : IDisposable
{
// Data from the problem
private int nbPlanes;
private int[] earliestTimeData;
private int[] targetTimeData;
private int[] latestTimeData;
private float[] earlinessCostData;
private float[] latenessCostData;
private int[,] separationTimeData;
// LocalSolver
private readonly LocalSolver localsolver;
// Decision variables
private LSExpression landingOrder;
private LSExpression[] preferredTimeVars;
// Landing time for each plane
private LSExpression landingTime;
// Objective
private LSExpression totalCost;
public AircraftLanding()
{
localsolver = new LocalSolver();
}
public void Dispose()
{
if (localsolver != null)
localsolver.Dispose();
}
/* Read instance data */
private void ReadInstance(string fileName)
{
using (StreamReader input = new StreamReader(fileName))
{
string[] firstLineSplitted = input.ReadLine().Split();
nbPlanes = int.Parse(firstLineSplitted[1]);
earliestTimeData = new int[nbPlanes];
targetTimeData = new int[nbPlanes];
latestTimeData = new int[nbPlanes];
earlinessCostData = new float[nbPlanes];
latenessCostData = new float[nbPlanes];
separationTimeData = new int[nbPlanes, nbPlanes];
for (int p = 0; p < nbPlanes; ++p)
{
string[] secondLineSplitted = input.ReadLine().Split();
earliestTimeData[p] = int.Parse(secondLineSplitted[2]);
targetTimeData[p] = int.Parse(secondLineSplitted[3]);
latestTimeData[p] = int.Parse(secondLineSplitted[4]);
earlinessCostData[p] = float.Parse(
secondLineSplitted[5],
CultureInfo.InvariantCulture
);
latenessCostData[p] = float.Parse(
secondLineSplitted[6],
CultureInfo.InvariantCulture
);
int pp = 0;
while (pp < nbPlanes)
{
string[] lineSplitted = input.ReadLine().Split(' ');
for (int i = 0; i < lineSplitted.Length; ++i)
{
if (lineSplitted[i].Length > 0)
{
separationTimeData[p, pp] = int.Parse(lineSplitted[i]);
pp++;
}
}
}
}
}
}
private LSExpression GetMinLandingTime(
LSExpression p,
LSExpression prev,
LSModel model,
LSExpression separationTime
)
{
return model.If(
p > 0,
prev + model.At(separationTime, landingOrder[p - 1], landingOrder[p]),
0
);
}
private void Solve(int limit)
{
// Declare the optimization model
LSModel model = localsolver.GetModel();
// A list variable: landingOrder[i] is the index of the ith plane to land
landingOrder = model.List(nbPlanes);
// All planes must be scheduled
model.Constraint(model.Count(landingOrder) == nbPlanes);
// Create LocalSolver arrays to be able to access them with "at" operators
LSExpression targetTime = model.Array(targetTimeData);
LSExpression latestTime = model.Array(latestTimeData);
LSExpression earlinessCost = model.Array(earlinessCostData);
LSExpression latenessCost = model.Array(latenessCostData);
LSExpression separationTime = model.Array(separationTimeData);
// Int variables: preferred time for each plane
preferredTimeVars = new LSExpression[nbPlanes];
for (int p = 0; p < nbPlanes; ++p)
preferredTimeVars[p] = model.Int(earliestTimeData[p], targetTimeData[p]);
LSExpression preferredTime = model.Array(preferredTimeVars);
// Landing time for each plane
LSExpression landingTimeLambda = model.LambdaFunction(
(p, prev) =>
model.Max(
preferredTime[landingOrder[p]],
GetMinLandingTime(p, prev, model, separationTime)
)
);
landingTime = model.Array(model.Range(0, nbPlanes), landingTimeLambda);
// Landing times must respect the separation time with every previous plane
for (int p = 1; p < nbPlanes; ++p)
{
LSExpression lastSeparationEnd = model.Max();
for (int previousPlane = 0; previousPlane < p; ++previousPlane)
{
lastSeparationEnd.AddOperand(
landingTime[previousPlane]
+ model.At(separationTime, landingOrder[previousPlane], landingOrder[p])
);
}
model.Constraint(landingTime[p] >= lastSeparationEnd);
}
totalCost = model.Sum();
for (int p = 0; p < nbPlanes; ++p)
{
LSExpression planeIndex = landingOrder[p];
// Constraint on latest landing time
model.Constraint(landingTime[p] <= latestTime[planeIndex]);
// Cost for each plane
LSExpression unitCost = model.If(
landingTime[p] < targetTime[planeIndex],
earlinessCost[planeIndex],
latenessCost[planeIndex]
);
LSExpression differenceToTargetTime = model.Abs(
landingTime[p] - targetTime[planeIndex]
);
totalCost.AddOperand(unitCost * differenceToTargetTime);
}
// Minimize the total cost
model.Minimize(totalCost);
model.Close();
// Parameterize the solver
localsolver.GetParam().SetTimeLimit(limit);
localsolver.Solve();
}
/* Write the solution in a file with the following format:
* - 1st line: value of the objective;
* - 2nd line: for each position p, index of plane at position p. */
private void WriteSolution(string fileName)
{
using (StreamWriter output = new StreamWriter(fileName))
{
output.WriteLine(totalCost.GetDoubleValue());
LSCollection landingOrderCollection = landingOrder.GetCollectionValue();
for (int i = 0; i < nbPlanes; ++i)
output.Write(landingOrderCollection.Get(i) + " ");
output.WriteLine();
}
}
public static void Main(string[] args)
{
if (args.Length < 1)
{
Console.WriteLine("Usage: AircraftLanding inputFile [solFile] [timeLimit]");
Environment.Exit(1);
}
string instanceFile = args[0];
string outputFile = args.Length > 1 ? args[1] : null;
string strTimeLimit = args.Length > 2 ? args[2] : "20";
using (AircraftLanding model = new AircraftLanding())
{
model.ReadInstance(instanceFile);
model.Solve(int.Parse(strTimeLimit));
if (outputFile != null)
model.WriteSolution(outputFile);
}
}
}
- Compilation / Execution (Windows)
- javac AircraftLanding.java -cp %LS_HOME%\bin\localsolver.jarjava -cp %LS_HOME%\bin\localsolver.jar;. AircraftLanding instances\airland1.txt
- Compilation / Execution (Linux)
- javac AircraftLanding.java -cp /opt/localsolver_12_5/bin/localsolver.jarjava -cp /opt/localsolver_12_5/bin/localsolver.jar:. AircraftLanding instances/airland1.txt
import java.util.*;
import java.io.*;
import localsolver.*;
public class AircraftLanding {
// Data from the problem
private int nbPlanes;
private int[] earliestTimeData;
private int[] targetTimeData;
private int[] latestTimeData;
private float[] earlinessCostData;
private float[] latenessCostData;
private int[][] separationTimeData;
// LocalSolver
private final LocalSolver localsolver;
// Decision variables
private LSExpression landingOrder;
private LSExpression[] preferredTimeVars;
// Landing time for each plane
private LSExpression landingTime;
// Objective
private LSExpression totalCost;
private AircraftLanding(LocalSolver localsolver) {
this.localsolver = localsolver;
}
/* Read instance data */
private void readInstance(String fileName) throws IOException {
try (Scanner input = new Scanner(new File(fileName))) {
nbPlanes = input.nextInt();
input.nextInt(); // Skip freezeTime value
earliestTimeData = new int[nbPlanes];
targetTimeData = new int[nbPlanes];
latestTimeData = new int[nbPlanes];
earlinessCostData = new float[nbPlanes];
latenessCostData = new float[nbPlanes];
separationTimeData = new int[nbPlanes][nbPlanes];
for (int p = 0; p < nbPlanes; ++p) {
input.nextInt(); // Skip appearanceTime values
earliestTimeData[p] = input.nextInt();
targetTimeData[p] = input.nextInt();
latestTimeData[p] = input.nextInt();
earlinessCostData[p] = Float.parseFloat(input.next());
latenessCostData[p] = Float.parseFloat(input.next());
for (int pp = 0; pp < nbPlanes; ++pp) {
separationTimeData[p][pp] = input.nextInt();
}
}
}
}
private LSExpression getMinLandingTime(LSExpression p, LSExpression prev, LSExpression separationTime,
LSModel model) {
LSExpression planeIndex = model.at(landingOrder, p);
LSExpression previousPlaneIndex = model.at(landingOrder, model.sub(p, 1));
return model.iif(model.gt(p, 0), model.sum(prev, model.at(separationTime, previousPlaneIndex, planeIndex)), 0);
}
private void solve(int limit) {
// Declare the optimization model
LSModel model = localsolver.getModel();
// A list variable: landingOrder[i] is the index of the ith plane to land
landingOrder = model.listVar(nbPlanes);
// All planes must be scheduled
model.constraint(model.eq(model.count(landingOrder), nbPlanes));
// Create LocalSolver arrays to be able to access them with "at" operators
LSExpression targetTime = model.array(targetTimeData);
LSExpression latestTime = model.array(latestTimeData);
LSExpression earlinessCost = model.array(earlinessCostData);
LSExpression latenessCost = model.array(latenessCostData);
LSExpression separationTime = model.array(separationTimeData);
// Int variables: preferred time for each plane
preferredTimeVars = new LSExpression[nbPlanes];
for (int p = 0; p < nbPlanes; ++p) {
preferredTimeVars[p] = model.intVar(earliestTimeData[p], targetTimeData[p]);
}
LSExpression preferredTime = model.array(preferredTimeVars);
// Landing time for each plane
LSExpression landingTimeLambda = model
.lambdaFunction((p, prev) -> model.max(model.at(preferredTime, model.at(landingOrder, p)),
getMinLandingTime(p, prev, separationTime, model)));
landingTime = model.array(model.range(0, nbPlanes), landingTimeLambda);
// Landing times must respect the separation time with every previous plane
for (int p = 1; p < nbPlanes; ++p) {
LSExpression lastSeparationEnd = model.max();
for (int previousPlane = 0; previousPlane < p; ++previousPlane) {
lastSeparationEnd.addOperand(model.sum(model.at(landingTime, previousPlane),
model.at(separationTime, model.at(landingOrder, previousPlane), model.at(landingOrder, p))));
}
model.constraint(model.geq(model.at(landingTime, p), lastSeparationEnd));
}
totalCost = model.sum();
for (int p = 0; p < nbPlanes; ++p) {
LSExpression planeIndex = model.at(landingOrder, p);
// Constraint on latest landing time
model.addConstraint(model.leq(model.at(landingTime, p), model.at(latestTime, planeIndex)));
// Cost for each plane
LSExpression unitCost = model.iif(model.lt(model.at(landingTime, p), model.at(targetTime, planeIndex)),
model.at(earlinessCost, planeIndex), model.at(latenessCost, planeIndex));
LSExpression differenceToTargetTime = model
.abs(model.sub(model.at(landingTime, p), model.at(targetTime, planeIndex)));
totalCost.addOperand(model.prod(unitCost, differenceToTargetTime));
}
// Minimize the total cost
model.minimize(totalCost);
model.close();
// Parameterize the solver
localsolver.getParam().setTimeLimit(limit);
localsolver.solve();
}
/*
* Write the solution in a file with the following format:
* - 1st line: value of the objective;
* - 2nd line: for each position p, index of plane at position p.
*/
private void writeSolution(String fileName) throws IOException {
try (PrintWriter output = new PrintWriter(new FileWriter(fileName))) {
output.println(totalCost.getDoubleValue());
LSCollection landingOrderCollection = landingOrder.getCollectionValue();
for (int i = 0; i < nbPlanes; ++i) {
output.print(landingOrderCollection.get(i) + " ");
}
output.println();
}
}
public static void main(String[] args) {
if (args.length < 1) {
System.err.println("Usage: AircraftLanding inputFile [outputFile] [timeLimit]");
System.exit(1);
}
String instanceFile = args[0];
String outputFile = args.length > 1 ? args[1] : null;
String strTimeLimit = args.length > 2 ? args[2] : "20";
try (LocalSolver localsolver = new LocalSolver()) {
AircraftLanding model = new AircraftLanding(localsolver);
model.readInstance(instanceFile);
model.solve(Integer.parseInt(strTimeLimit));
if (outputFile != null)
model.writeSolution(outputFile);
} catch (Exception ex) {
System.err.println(ex);
ex.printStackTrace();
System.exit(1);
}
}
}