
Modeling scheduling problems with Hexaly

Léa Blaise ∗

∗ Hexaly, 251 Boulevard Pereire, 75017 Paris, France
(e-mail: lblaise@hexaly.com).

Abstract: In this paper, we focus on scheduling problems in general, and on how to model the
constraints typically encountered in these problems using Hexaly’s modeling formalism. Hexaly
is a global mathematical solver offering a rich nonlinear and set-based modeling formalism.
We show how we can use its collection of decision variables (lists, intervals, and optional
intervals) and operators (set-based operators, variadic operators, lambda functions) can be used
to efficiently model characteristics such as disjunctive and cumulative resources, preemption, or
multi-alternatives. We also show that its compact models allow to solver to reach very good
performance on scheduling problems.

Keywords: scheduling, modeling, solver

1. INTRODUCTION

Hexaly is a global optimization solver based on various
exact and heuristic techniques described in Gardi et al.
(2014). In this paper, we focus on its performance on
scheduling problems in general (problems with precedence
constraints and disjunctive or cumulative resources, min-
imizing makespan, weighted sum of tardiness, etc.). Hex-
aly’s modeling formalism makes it easy to express many
academic and industrial scheduling problems, using only
generic operators. These models, based on interval and list
decision variables, have the advantage of being compact,
enabling the solver to handle large-scale problems. Indeed,
the algorithms implemented within Hexaly exploit this
modeling and enable it to achieve very good performance
on various scheduling problems. As shown in Table 1, the
solver reaches gaps to the best known solution from the
literature below 2% with up to 2,000 tasks on various
academic scheduling problems, all within one minute of
running time.

Problem max # tasks Gap

Job Shop 2,000 2,2%
Flexible Job Shop 500 0.5%

Open Shop 400 0.1%
RCPSP 300 1.4%

Table 1. Gap to the best known solution from
the literature on various scheduling problems

In this paper, we will show how the core features of
Hexaly’s modeling formalism, such as list and interval
variables and lambda functions, enable users to write
straightforward and efficient models for disjunctive and
cumulative scheduling problems. We will also show that
models written using Hexaly’s set-based formalism are
more compact than their equivalents in the linear or
constraint programming formalisms used by other classical
solvers, such as Gurobi or CP Optimizer.

2. HEXALY’S SET-BASED MODELING FORMALISM

In addition to classical Boolean, integer, and float deci-
sions, Hexaly’s modeling formalism offers set-based deci-
sion variables, such as intervals and lists. Relying on these
decisions, we can write compact and efficient models for
scheduling problems.

An interval is a decision variable whose value is an integer
interval of the form [a, b), verifying a ≤ b. They typically
represent time intervals. Indeed, they are used in schedul-
ing models to represent the time span during which each
task is being processed.

In disjunctive scheduling problems, the tasks are scheduled
one after the other, and it is often useful to know their
processing order. For that, we use list decision variables.
A list of domain size n is a decision variable whose value
is a permutation of a subset of [0, n − 1]. In a scheduling
problem, if each element between 0 and n − 1 represents
the index of a task, then the list variable represents the
ordered set of the tasks that are scheduled.

Another specificity of Hexaly’s modeling formalism is the
possibility to iterate over a variable number of terms. Any
n-ary operator (such as sum, product, min, max, and, or,
and xor) can indeed be called with two arguments: a set
of integers S, and a function f . The set of integers S does
not have to be fixed, and its contents can vary during the
search. For example, it can be a range [0, x], where x is an
integer decision variable, an interval decision variable, or
a list decision variable.

3. MODELING DISJUNCTIVE SCHEDULING
PROBLEMS

3.1 Modeling non-overlap constraints

The presence of disjunctive resources in a scheduling
problem is characterized by non-overlap constraints on
tasks assigned to the same resource. A simple way of
writing this constraint consists in exploiting the order of



the tasks: each task can only start after the previous task
has finished.

With Hexaly’s modeling formalism, this constraint is writ-
ten using two types of decision variables. On the one
hand, the resource is represented by a list variable: the
elements of the list correspond to the tasks executed on
the resource, arranged in ascending order of execution
dates. In addition, interval decision variables are used to
represent the execution range of each task.

1 order <- list(nbTasks);

2 task[0...nbTasks] <- interval(0, horizon);

We then write the non-overlap constraint using a variadic
and operator and a lambda function. This constraint reads
“for any position i in the list, the task at position i
must be executed before the task at position i + 1”. This
formulation based on list and interval variables has the
advantage of allowing the user to write the non-overlap
constraint in O(n) only, where n represents the number
of tasks, as opposed to O(n2) when writing pairwise non-
overlap constraints on the interval variables.

1 constraint and(0...nbTasks-1, i => task[order[i]]

↪→ < task[order[i+1]]);

3.2 Modeling flexible disjunctive resources

In a flexible disjunctive scheduling problem, several re-
sources are available, and we must decide which resource
will execute each task. In this case, if n is the number of
tasks, we use one list variable of domain size n per resource,
representing the indices of the tasks scheduled on this
resource, in ascending order of execution dates. To ensure
that each task is scheduled on exactly one resource, we
constrain the lists to form a partition of [0, n− 1]. We can
then use a similar formulation as in the previous section
to model the non-overlap constraints on the resources: for
any given resource j, and for any position i between 0 and
the number of tasks scheduled on resource j minus 2, the
task at position i on machine j must be executed before
the task at position i+ 1 on machine j.

1 order[j in 0...nbMachines] <- list(nbTasks);

2 constraint partition[j in 0...nbMachine](order[j]);

3 for [j in 0...nbMachines] {

4 constraint and(0...count(order[j])-1, i =>

↪→ task[order[i]] < task[order[i+1]]);

5 }

The size of the non-overlap constraint for resource j is
then O(nj), where nj is the number of tasks scheduled on
resource j. Since the affectation of a task to a resource
is a decision of the problem, the values of nj for each
resource j are not fixed but can vary during the search.
Thanks to the variadic formulation, it is then possible to
model the non-overlap constraints in such a way that the
size of each individual constraint varies and the total size
of all constraints remains O(n), making the model very
compact.

Using Hexaly’s modeling formalism, a scheduling problem
with n tasks and m disjunctive flexible resources then uses
O(n + m) decision variables: n intervals and m lists. We

can compare this number with the number of decisions
in equivalent models written using other modeling for-
malisms. For instance, a model written for a constraint
programming solver like CP Optimizer uses O(nm) inter-
val decision variables: one for each task and each resource.
As described in Laborie et al. (2018), to ensure that each
task is scheduled on only one resource, and not on all
resources at once, the m intervals associated with the
same task are linked together by an alternative constraint,
allowing only one of the intervals to be considered in the
schedule. In a linear programming formalism, a classical
formulation of the problem such as the one given by
Özgüven et al. (2010) uses O(n2m) Boolean and integer
decisions. Thanks to its compact modeling, Hexaly is able
to handle much larger instances. The comparison of the
number of decision variables for these three modeling for-
malisms is summarized in Table 2.

Hexaly CP Optimizer MIP

Boolean 0 0 n2m
Integer 0 0 n2m
Interval n nm 0
List m 0 0

Total n+m nm n2m

Table 2. Comparison of the number of decision
variables for different modeling formalisms

Its compact modeling formalism and generic heuristic
search, described in Blaise (2022), allow Hexaly to achieve
very good performance on disjunctive scheduling prob-
lems. For instance, it reaches an average optimality gap
of 0.5% in one minute of running time on the Flexible Job
Shop Scheduling Problem (FJSP) research benchmark by
Behnke and Geiger (2012), with up to 500 tasks and 60
machines. Moreover, it also allows Hexaly to deal with
much larger instances. For example, on the very large-
scale Job Shop Scheduling Problem (JSSP) benchmark
proposed by Da Col and Teppan (2022) (1,000 jobs and
1,000 machines, for a total of 1,000,000 tasks), Hexaly
improves the literature’s best known solution by 8.6% on
average within 10 minutes of running time.

4. MODELING CUMULATIVE SCHEDULING
PROBLEMS

Unlike disjunctive resources, a cumulative resource can
handle several tasks at once, within the limits of its
capacity. Similarly as for disjunctive scheduling problems,
the models for cumulative scheduling problems use interval
decision variables representing the time span of the tasks.
However, as the tasks assigned to a cumulative resource
are not ordered, the models do not require the use of list
decision variables.

The constraint associated with the presence of a cumula-
tive resource can be expressed as follows. At any time t,
the sum of the weights of the tasks running on the resource
must be less than the resource’s capacity. For any time t
and any task i, we can check whether task i is running
at time t by using the contains operator on the interval
decision representing task i:

1 contains(task[i], t)



We can then compute the weighted sum of these quantities
over all the tasks to check whether the resource capacity
is respected at time t:

1 sum[i in 0...nbTasks] (weight[i] * contains(task[i], t))

↪→ <= capacity

Finally, we must ensure that the constraint is verified at
any time t. For that, we use a variadic and formulation and
a lambda function to iterate over the entire time horizon:

1 constraint and(0...horizon, t => sum[i in 0...nbTasks]

↪→ (weight[i] * contains(task[i], t)) <= capacity);

Thanks to the variadic operators available in Hexaly’s
modeling formalism, the formulation of the cumulative
constraints is very compact. Indeed, the variadic and op-
erator iterating over the time horizon is never “unrolled”.
On the contrary, both the user model and the internal
representation of the constraint stay compact throughout
the resolution.

These constraints form the foundation of many cumulative
scheduling problems, such as the Resource-Constrained
Project Scheduling Problem (RCPSP). Thanks to its effi-
cient modeling and interval representation of cumulative
constraints, Hexaly achieves very good performance on
such problems. For example, the solver reaches an opti-
mality gap of 1.9% within 1 minute of running time on the
academic benchmark proposed by Debels and Vanhoucke
(2007) for the Resource-Constrained Project Scheduling
Problem (RCPSP), composed instances with 300 tasks.

5. MODELING OPTIONAL TASKS IN SCHEDULING
PROBLEMS

Interval and list decision variables make the modeling of
most academic and industrial scheduling problems very
straightforward. However, scheduling problems with op-
tional tasks remain hard to model. In this section, we show
how introducing optional interval decision variables allows
to model certain complex aspects of scheduling problems,
such as preemption and multi-alternatives.

5.1 Optional interval decision variables and presence
operator

An optional interval is a decision variable whose value is ei-
ther an interval of the form [a, b), verifying a ≤ b, or absent.
The absent value means that the task corresponding to
this interval is not scheduled. To facilitate the handling of
optional intervals, Hexaly’s operator library also includes a
presence operator, returning true if the interval is present
and false if it is absent.

It is generally more advantageous to use optional inter-
val variables rather than regular intervals coupled with
Boolean decisions representing these intervals’ presence.
Indeed, information about the presence and execution
dates of a task is then held within a single decision, giving
the solver more information about the problem structure,
and enabling it to apply relevant algorithms to solve it. In
addition, it is possible to implement default behaviors for
operators that apply to optional intervals, making it easier
to write models. For example, the hull operator takes as

input a set of intervals and returns the hull of all present
intervals, or absent if none of these intervals is present.
Similarly, the intersection operator returns absent if at
least one of the intervals is absent.

5.2 Modeling multi-alternative scheduling problems

We consider a scheduling problem with multiple alter-
natives. In this problem, tasks are linked by precedence
constraints. The successors of a given task constitute dif-
ferent alternatives, only one of which must be realized.
Each of these alternatives comprises one or more subtasks.
If an alternative is selected, then each of its subtasks
must be completed. Using optional interval decisions and
nonlinear operators such as presence and hull, the problem
is expressed in a simple and compact way:

1 subtask[i in 0...n][k in 0...nbTasks[i]] <-

↪→ optionalInterval(0, H);

2 alternative[i in 0...n] <- hull[k in 0...nbTasks[i]](

↪→ subtask[i][k]);

3 for [i in 0...n] {

4 constraint sum[s in successors[i]](presence(alternative

↪→ [s])) == presence(alternative[i]);

5 for [k in 0...nbTasks[i]] constraint presence(subtask[i

↪→ ][k]) == presence(alternative[i]);

6 }

5.3 Modeling pseudo-preemptive scheduling problems

A preemptive scheduling problem is one in which tasks can
be interrupted and then resumed. In a pseudo-preemptive
version of the problem, a maximum number p of inter-
ruptions is defined for each task, which is then modeled
as a set of p + 1 optional subtasks. At least one of these
subtasks must be present, and the sum of durations of the
present subtasks must be equal to the duration of the task.
For ease of modeling, we also assume that if a subtask of
index k is present, then all subtasks of index j ≤ k are
also present. Here again, Hexaly’s optional interval deci-
sion variables and numerous nonlinear operators (presence,
length, ternary operator...) make it easy to model such
problems:

1 subtask[i in 0...n][k in 0...p+1] <- optionalInterval(0, H)

↪→ ;

2 for [i in 0...n] {

3 constraint presence(subtask[i][0]);

4 for [k in 1...p+1] constraint presence(subtask[i][k])

↪→ <= presence(subtask[i][k-1]);

5 constraint sum[k in 0...p+1](presence(subtask[i][k])?

↪→ length(subtask[i][k]): 0) == d[i];

6 }

6. CONCLUSION

With Hexaly’s modeling formalism, which includes list and
interval decision variables, as well as variadic operators
and lambda functions, writing models for academic and
industrial scheduling problems is made very straightfor-
ward. Its collection of generic nonlinear and set-based
operators can be used to model the typical characteristics
of scheduling problems, such as disjunctive and cumulative
resources, but also complex business constraints. These



compact models are then made into efficient internal repre-
sentations of the problem, which Hexaly exploits to deliver
state-of-the art results on scheduling problems, including
on very large-scale instances with millions of tasks.

REFERENCES

Behnke, D. and Geiger, M. (2012). Test instances for the
flexible job shop scheduling problem with work centers.
Technical report, BWL, insb. Logistik-Management.

Blaise, L. (2022). Modélisation et résolution de problèmes
d’ordonnancement au sein du solveur d’optimisation
mathématique LocalSolver. Theses, INSA de Toulouse.

Da Col, G. and Teppan, E.C. (2022). Industrial-
size job shop scheduling with constraint programming.
Operations Research Perspectives, 9, 100249. doi:
https://doi.org/10.1016/j.orp.2022.100249.

Debels, D. and Vanhoucke, M. (2007). A decomposition-
based genetic algorithm for the resource-constrained
project-scheduling problem. Operations Research, 55(3),
457–469. doi:10.1287/opre.1060.0358.

Gardi, F., Benoist, T., Darlay, J., Estellon, B., and Megel,
R. (2014). Mathematical Programming Solver Based on
Local Search. John Wiley & Sons, Ltd.

Laborie, P., Rogerie, J., Shaw, P., and Vilim, P. (2018).
IBM ILOG CP optimizer for scheduling. Constraints,
23, 210–250.

Özgüven, C., Özbakır, L., and Yavuz, Y. (2010).
Mathematical models for job-shop scheduling
problems with routing and process plan flexi-
bility. Applied Mathematical Modelling. doi:
https://doi.org/10.1016/j.apm.2009.09.002.


