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1 Introduction

Given a scheduling problem expressed in the Hexaly framework, our goal is to
quickly calculate a reasonable lower bound on the objective at the beginning of
the solution process, supplementing more computationally expensive bounds com-
puted during the search. By quickly, we mean within a very short computation
time relative to the overall time allocated for solving the problem. Typically un-
der one second for problems involving several thousand activities. To achieve this,
we propose using classical algorithms with a complexity of at most O(n log(n))
on single-machine subproblems.

2 Notation et considered polynomial algorithms

Let A represent the set of interval variables (activities) in the model de�ned
for Hexaly. For x ∈ A, C(x) denotes the end time of x and d(x) its minimum
duration. Let P(x) ⊂ A denote the set of intervals that must end before C(x)
due to precedence constraints, and M ⊂ 2A the set of disjunctive constraints of
the problem (machines).

The algorithms considered are Moore-Hodgson [2] and Potts-Wassenhove [1]
for problems (1||Ui) and (1||wiUi), Smith [3] for (1||

∑
wiCi), and Jackson [4] for

(1||Lmax). These algorithms have a complexity of O(n log(n)) and yield optimal
solutions for their speci�c problem, except for Potts-Wassenhove's, which is a
relaxation.

In the following sections, we illustrate our work using Smith's algorithm. The
other algorithms are approached in a similar manner.

3 Example of Smith's algorithm

To recall, Smith's algorithm for solving the problem (1||
∑

wiCi) involves ordering
tasks by increasing di/wi ratios.

All model expressions that can be represented as a weighted sum of interval
variable end times are identi�ed. Let r =

∑
wiC(xi) be one such expression.

We compute a lower bound for r as described bellow. It is worth noting that
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this approach is not limited to expressions r that participate in the objective
function; any expression of this form is subject to a lower bound calculation that
propagates throughout the rest of the problem.

Given a machine m ∈ M, we can calculate a bound on r =
∑

wiC(xi)
using Smith's algorithm by distributing the weights wi of intervals xi in r across
the intervals on m. For example, consider a model expression r = w3C(x3) +
w4C(x4) + w5C(x5) and a machine m = {x1, x2, x3}. Suppose {x1, x2, x3} ⊂
P(x4) and {x1, x2} ⊂ P(x5). We can select weights to use in Smith's algorithm
on machine m that yield a valid bound on r, for instance, by evenly distributing
the wi based on precedences: {w4

3 + w5

2 , w4

3 + w5

2 , w3 +
w4

3 }. Other distributions
can also produce valid bounds, with the highest of these bounds being retained.

4 Results

The approach was extended to other algorithms and objective types mentioned
above and tested on classic benchmarks (e.g., job shop), either used directly or
modi�ed according to the objective. In the table below, the Gap columns indicate
the average gap between the lower and best upper bounds, before and after the
process described here.

Objective # Improvement Gap Before Gap After Di�erence
Ui 640 84% 66% 48% -18%
wiUi 760 77% 63% 54% -9%
wiCi 652 95% 55% 24% -31%
Lmax 700 69% - - -35%

Table 1: Average Lower Bound Improvement by Objective Type.

5 Conclusions and Future Work

The identi�cation of single-machine subproblems suitable for polynomial algo-
rithms helps to improve bounds from Hexaly 12.5. Further research is needed
to examine di�erent ways to distribute the weights wi (and, depending on the
objectives, due dates) of expressions r among the machine intervals to achieve
even better bounds.
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