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1 Introduction

Given a scheduling problem expressed in the Hexaly framework, our goal is to
quickly calculate a reasonable lower bound on the objective at the beginning of
the solution process, supplementing more computationally expensive bounds com-
puted during the search. By quickly, we mean within a very short computation
time relative to the overall time allocated for solving the problem. Typically un-
der one second for problems involving several thousand activities. To achieve this,
we propose using classical algorithms with a complexity of at most O(nlog(n))
on single-machine subproblems.

2 Notation et considered polynomial algorithms

Let A represent the set of interval variables (activities) in the model defined
for Hexaly. For x € A, C(x) denotes the end time of z and d(z) its minimum
duration. Let P(x) C A denote the set of intervals that must end before C(z)
due to precedence constraints, and M C 2 the set of disjunctive constraints of
the problem (machines).

The algorithms considered are Moore-Hodgson [2] and Potts-Wassenhove [1]
for problems (1||U;) and (1||w;U;), Smith [3] for (1]| > w;C;), and Jackson [4] for
(1]|Limax)- These algorithms have a complexity of O(nlog(n)) and yield optimal
solutions for their specific problem, except for Potts-Wassenhove’s, which is a
relaxation.

In the following sections, we illustrate our work using Smith’s algorithm. The
other algorithms are approached in a similar manner.

3 Example of Smith’s algorithm

To recall, Smith’s algorithm for solving the problem (1|| >~ w;C;) involves ordering
tasks by increasing d; /w; ratios.

All model expressions that can be represented as a weighted sum of interval
variable end times are identified. Let r = Y w;C(z;) be one such expression.
We compute a lower bound for r as described bellow. It is worth noting that



this approach is not limited to expressions r that participate in the objective
function; any expression of this form is subject to a lower bound calculation that
propagates throughout the rest of the problem.

Given a machine m € M, we can calculate a bound on r = > w;C(x;)
using Smith’s algorithm by distributing the weights w; of intervals x; in r across
the intervals on m. For example, consider a model expression r = w3C(x3) +
waC(z4) + wsC(x5) and a machine m = {x1,z,23}. Suppose {z1, 22,23} C
P(x4) and {z1, 22} C P(x5). We can select weights to use in Smith’s algorithm
on machine m that yield a valid bound on r, for instance, by evenly distributing
the w; based on precedences: {%* + %, g% + &, w3 + 5* }. Other distributions
can also produce valid bounds, with the highest of these bounds being retained.

4 Results

The approach was extended to other algorithms and objective types mentioned
above and tested on classic benchmarks (e.g., job shop), either used directly or
modified according to the objective. In the table below, the Gap columns indicate
the average gap between the lower and best upper bounds, before and after the
process described here.

Objective ‘ # Improvement ‘ Gap Before Gap After Difference

U; 640 84% 66% 48% -18%
w;U; 760 7% 63% 54% -9% Il

w; C; 652 95% 55% 24% -31% .
Linax 700 69% - - -35% I

Table 1: Average Lower Bound Improvement by Objective Type.

5 Conclusions and Future Work

The identification of single-machine subproblems suitable for polynomial algo-
rithms helps to improve bounds from Hexaly 12.5. Further research is needed
to examine different ways to distribute the weights w; (and, depending on the
objectives, due dates) of expressions r among the machine intervals to achieve
even better bounds.
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