Vehicle Routing Problem with Time Windows (CVRPTW)
Problem
In the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW), a fleet of delivery vehicles with uniform capacity must service customers. The customers have known opening hours and demand for a single commodity. The vehicles start and end their routes at a common depot. Each customer must be served by exactly one vehicle within its opening hours, and the total demand served by each vehicle must not exceed its capacity. The objectives are to minimize the fleet size and the total traveled distance.
Principles learned
- Add list decision variables to model the trucks’ sequences of customers
- Define an array using a recursive lambda function to compute the customers’ visiting times
- Add multiple objectives and model the lateness as a soft constraint
Data
The instances provided come from the Solomon instances. The format of the data files is as follows:
- The first line gives the name of the instance
- The fifth line contains the number of vehicles and their common capacity
- From the 10th line, for each customer (starting with the depot):
- The index of the customer
- The x coordinate
- The y coordinate
- The demand
- The earliest arrival
- The latest arrival
- The service time
Program
The Hexaly model for the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW) is an extension of the CVRP model. We refer the reader to this model for the routing aspects of the problem: list decision variables representing the customers assigned to each truck, capacity constraints, and total traveled distance computation.
Since time windows can be difficult to respect, they are handled as a first-priority objective rather than hard constraints. In case of early arrival, the truck has to wait for the customer’s opening hour. In case of late arrival, we measure and penalize the lateness. The first objective of the problem then consists in minimizing the total lateness among all customers. A solution is considered feasible when this cumulated lateness is zero.
We compute the end times of each truck’s visits using a recursive array. For each truck and each customer, the arrival time is the maximum of:
- the end time of the previous visit plus the travel time (equivalent to the distance in the instances provided). For the first visit, it is the travel time from the depot (assuming the truck leaves the depot at time 0)
- the earliest allowed arrival time for this customer
The end time is merely this arrival time plus the service time for this customer. The arrival to the depot at the end of the tour is the end time of the last visit plus the traveling time from this point to the depot. From the end times, we can easily compute the cumulated lateness.
Finally, we minimize in lexicographic order the total lateness, the number of trucks used, and the total traveled distance.
- Execution
-
hexaly cvrptw.hxm inFileName=instances/R101.25.txt [hxTimeLimit=] [solFileName=]
use io;
/* Read instance data. The input files follow the "Solomon" format*/
function input() {
usage = "Usage: hexaly cvrptw.hxm "
+ "inFileName=inputFile [solFileName=outputFile] [hxTimeLimit=timeLimit]";
if (inFileName == nil) throw usage;
readInputCvrptw();
computeDistanceMatrix();
}
/* Declare the optimization model */
function model() {
customersSequences[k in 0...nbTrucks] <- list(nbCustomers);
// All customers must be visited by exactly one truck
constraint partition[k in 0...nbTrucks](customersSequences[k]);
for [k in 0...nbTrucks] {
local sequence <- customersSequences[k];
local c <- count(sequence);
// A truck is used if it visits at least one customer
truckUsed[k] <- c > 0;
// The quantity needed in each route must not exceed the truck capacity
routeQuantity[k] <- sum(sequence, j => demands[j]);
constraint routeQuantity[k] <= truckCapacity;
// End of each visit
endTime[k] <- array(0...c, (i, prev) => max(earliestStart[sequence[i]],
i == 0 ?
distanceDepot[sequence[0]] :
prev + distanceMatrix[sequence[i - 1]][sequence[i]]) + serviceTime[sequence[i]], 0);
// Arriving home after max horizon
homeLateness[k] <- truckUsed[k] ?
max(0, endTime[k][c - 1] + distanceDepot[sequence[c - 1]] - maxHorizon) :
0;
// Distance traveled by truck k
routeDistances[k] <- sum(1...c,
i => distanceMatrix[sequence[i-1]][sequence[i]])
+ (truckUsed[k] ?
(distanceDepot[sequence[0]] + distanceDepot[sequence[c - 1]]) :
0);
// Completing visit after latest end
lateness[k] <- homeLateness[k] + sum(0...c,
i => max(0, endTime[k][i] - latestEnd[sequence[i]]));
}
// Total lateness, must be 0 for a solution to be valid
totalLateness <- sum[k in 0...nbTrucks](lateness[k]);
// Total number of trucks used
nbTrucksUsed <- sum[k in 0...nbTrucks](truckUsed[k]);
// Total distance traveled (convention in Solomon's instances is to round to 2 decimals)
totalDistance <- round(100 * sum[k in 0...nbTrucks](routeDistances[k])) / 100;
// Objective: minimize the lateness, then the number of trucks used, then the distance traveled
minimize totalLateness;
minimize nbTrucksUsed;
minimize totalDistance;
}
/* Parametrize the solver */
function param() {
if (hxTimeLimit == nil) hxTimeLimit = 20;
}
/* Write the solution in a file with the following format:
* - number of trucks used and total distance
* - for each truck the customers visited (omitting the start/end at the depot) */
function output() {
if (solFileName == nil) return;
local outfile = io.openWrite(solFileName);
outfile.println(nbTrucksUsed.value, " ", totalDistance.value);
for [k in 0...nbTrucks] {
if (truckUsed[k].value != 1) continue;
for [customer in customersSequences[k].value] {
outfile.print(customer + 1, " ");
}
outfile.println();
}
}
function readInputCvrptw() {
local inFile = io.openRead(inFileName);
skipLines(inFile, 4);
// Truck related data
nbTrucks = inFile.readInt();
truckCapacity = inFile.readInt();
skipLines(inFile, 3);
// Depot data
local line = inFile.readln().split();
depotIndex = line[0].toInt();
depotX = line[1].toInt();
depotY = line[2].toInt();
maxHorizon = line[5].toInt();
// Customers data
i = 0;
while (!inFile.eof()) {
inLine = inFile.readln();
line = inLine.split();
if (count(line) == 0) break;
if (count(line) != 7) throw "Wrong file format";
customerIndex[i] = line[0].toInt();
customerX[i] = line[1].toInt();
customerY[i] = line[2].toInt();
demands[i] = line[3].toInt();
serviceTime[i] = line[6].toInt();
earliestStart[i] = line[4].toInt();
// in input files due date is meant as latest start time
latestEnd[i] = line[5].toInt() + serviceTime[i];
i = i + 1;
}
nbCustomers = i;
inFile.close();
}
function skipLines(inFile, nbLines) {
for [i in 0...nbLines]
inFile.readln();
}
// Compute the distance matrix
function computeDistanceMatrix() {
for [i in 0...nbCustomers] {
distanceMatrix[i][i] = 0;
for [j in i+1...nbCustomers] {
local localDistance = computeDist(i, j);
distanceMatrix[j][i] = localDistance;
distanceMatrix[i][j] = localDistance;
}
}
for [i in 0...nbCustomers] {
local localDistance = computeDepotDist(i);
distanceDepot[i] = localDistance;
}
}
function computeDist(i, j) {
local x1 = customerX[i];
local x2 = customerX[j];
local y1 = customerY[i];
local y2 = customerY[j];
return computeDistance(x1, x2, y1, y2);
}
function computeDepotDist(i) {
local x1 = customerX[i];
local xd = depotX;
local y1 = customerY[i];
local yd = depotY;
return computeDistance(x1, xd, y1, yd);
}
function computeDistance(x1, x2, y1, y2) {
return sqrt(pow((x1 - x2), 2) + pow((y1 - y2), 2));
}
- Execution (Windows)
-
set PYTHONPATH=%HX_HOME%\bin\pythonpython cvrptw.py instances\R101.25.txt
- Execution (Linux)
-
export PYTHONPATH=/opt/hexaly_13_0/bin/pythonpython cvrptw.py instances/R101.25.txt
import hexaly.optimizer
import sys
import math
def read_elem(filename):
with open(filename) as f:
return [str(elem) for elem in f.read().split()]
def main(instance_file, str_time_limit, output_file):
#
# Read instance data
#
nb_customers, nb_trucks, truck_capacity, dist_matrix_data, dist_depot_data, \
demands_data, service_time_data, earliest_start_data, latest_end_data, \
max_horizon = read_input_cvrptw(instance_file)
with hexaly.optimizer.HexalyOptimizer() as optimizer:
#
# Declare the optimization model
#
model = optimizer.model
# Sequence of customers visited by each truck
customers_sequences = [model.list(nb_customers) for k in range(nb_trucks)]
# All customers must be visited by exactly one truck
model.constraint(model.partition(customers_sequences))
# Create Hexaly arrays to be able to access them with an "at" operator
demands = model.array(demands_data)
earliest = model.array(earliest_start_data)
latest = model.array(latest_end_data)
service_time = model.array(service_time_data)
dist_matrix = model.array(dist_matrix_data)
dist_depot = model.array(dist_depot_data)
dist_routes = [None] * nb_trucks
end_time = [None] * nb_trucks
home_lateness = [None] * nb_trucks
lateness = [None] * nb_trucks
# A truck is used if it visits at least one customer
trucks_used = [(model.count(customers_sequences[k]) > 0) for k in range(nb_trucks)]
nb_trucks_used = model.sum(trucks_used)
for k in range(nb_trucks):
sequence = customers_sequences[k]
c = model.count(sequence)
# The quantity needed in each route must not exceed the truck capacity
demand_lambda = model.lambda_function(lambda j: demands[j])
route_quantity = model.sum(sequence, demand_lambda)
model.constraint(route_quantity <= truck_capacity)
# Distance traveled by each truck
dist_lambda = model.lambda_function(
lambda i: model.at(dist_matrix, sequence[i - 1], sequence[i]))
dist_routes[k] = model.sum(model.range(1, c), dist_lambda) \
+ model.iif(c > 0, dist_depot[sequence[0]] + dist_depot[sequence[c - 1]], 0)
# End of each visit
end_time_lambda = model.lambda_function(
lambda i, prev:
model.max(
earliest[sequence[i]],
model.iif(
i == 0, dist_depot[sequence[0]],
prev + model.at(dist_matrix, sequence[i - 1], sequence[i])))
+ service_time[sequence[i]])
end_time[k] = model.array(model.range(0, c), end_time_lambda, 0)
# Arriving home after max horizon
home_lateness[k] = model.iif(
trucks_used[k],
model.max(
0,
end_time[k][c - 1] + dist_depot[sequence[c - 1]] - max_horizon),
0)
# Completing visit after latest end
late_lambda = model.lambda_function(
lambda i: model.max(0, end_time[k][i] - latest[sequence[i]]))
lateness[k] = home_lateness[k] + model.sum(model.range(0, c), late_lambda)
# Total lateness
total_lateness = model.sum(lateness)
# Total distance traveled
total_distance = model.div(model.round(100 * model.sum(dist_routes)), 100)
# Objective: minimize the number of trucks used, then minimize the distance traveled
model.minimize(total_lateness)
model.minimize(nb_trucks_used)
model.minimize(total_distance)
model.close()
# Parameterize the optimizer
optimizer.param.time_limit = int(str_time_limit)
optimizer.solve()
#
# Write the solution in a file with the following format:
# - number of trucks used and total distance
# - for each truck the customers visited (omitting the start/end at the depot)
#
if output_file is not None:
with open(output_file, 'w') as f:
f.write("%d %d\n" % (nb_trucks_used.value, total_distance.value))
for k in range(nb_trucks):
if trucks_used[k].value != 1:
continue
# Values in sequence are in 0...nbCustomers. +1 is to put it back in
# 1...nbCustomers+1 as in the data files (0 being the depot)
for customer in customers_sequences[k].value:
f.write("%d " % (customer + 1))
f.write("\n")
# The input files follow the "Solomon" format
def read_input_cvrptw(filename):
file_it = iter(read_elem(filename))
for i in range(4):
next(file_it)
nb_trucks = int(next(file_it))
truck_capacity = int(next(file_it))
for i in range(13):
next(file_it)
depot_x = int(next(file_it))
depot_y = int(next(file_it))
for i in range(2):
next(file_it)
max_horizon = int(next(file_it))
next(file_it)
customers_x = []
customers_y = []
demands = []
earliest_start = []
latest_end = []
service_time = []
while True:
val = next(file_it, None)
if val is None:
break
i = int(val) - 1
customers_x.append(int(next(file_it)))
customers_y.append(int(next(file_it)))
demands.append(int(next(file_it)))
ready = int(next(file_it))
due = int(next(file_it))
stime = int(next(file_it))
earliest_start.append(ready)
# in input files due date is meant as latest start time
latest_end.append(due + stime)
service_time.append(stime)
nb_customers = i + 1
# Compute distance matrix
distance_matrix = compute_distance_matrix(customers_x, customers_y)
distance_depots = compute_distance_depots(depot_x, depot_y, customers_x, customers_y)
return nb_customers, nb_trucks, truck_capacity, distance_matrix, distance_depots, \
demands, service_time, earliest_start, latest_end, max_horizon
# Computes the distance matrix
def compute_distance_matrix(customers_x, customers_y):
nb_customers = len(customers_x)
distance_matrix = [[None for i in range(nb_customers)] for j in range(nb_customers)]
for i in range(nb_customers):
distance_matrix[i][i] = 0
for j in range(nb_customers):
dist = compute_dist(customers_x[i], customers_x[j],
customers_y[i], customers_y[j])
distance_matrix[i][j] = dist
distance_matrix[j][i] = dist
return distance_matrix
# Computes the distances to depot
def compute_distance_depots(depot_x, depot_y, customers_x, customers_y):
nb_customers = len(customers_x)
distance_depots = [None] * nb_customers
for i in range(nb_customers):
dist = compute_dist(depot_x, customers_x[i], depot_y, customers_y[i])
distance_depots[i] = dist
return distance_depots
def compute_dist(xi, xj, yi, yj):
return math.sqrt(math.pow(xi - xj, 2) + math.pow(yi - yj, 2))
if __name__ == '__main__':
if len(sys.argv) < 2:
print("Usage: python cvrptw.py input_file [output_file] [time_limit]")
sys.exit(1)
instance_file = sys.argv[1]
output_file = sys.argv[2] if len(sys.argv) > 2 else None
str_time_limit = sys.argv[3] if len(sys.argv) > 3 else "20"
main(instance_file, str_time_limit, output_file)
- Compilation / Execution (Windows)
-
cl /EHsc cvrptw.cpp -I%HX_HOME%\include /link %HX_HOME%\bin\hexaly130.libcvrptw instances\R101.25.txt
- Compilation / Execution (Linux)
-
g++ cvrptw.cpp -I/opt/hexaly_13_0/include -lhexaly130 -lpthread -o cvrp./cvrptw instances/R101.25.txt
#include "optimizer/hexalyoptimizer.h"
#include <cmath>
#include <cstring>
#include <fstream>
#include <iostream>
#include <vector>
using namespace hexaly;
using namespace std;
class Cvrptw {
public:
// Hexaly Optimizer
HexalyOptimizer optimizer;
// Number of customers
int nbCustomers;
// Capacity of the trucks
int truckCapacity;
// Latest allowed arrival to depot
int maxHorizon;
// Demand for each customer
vector<int> demandsData;
// Earliest arrival for each customer
vector<int> earliestStartData;
// Latest departure from each customer
vector<int> latestEndData;
// Service time for each customer
vector<int> serviceTimeData;
// Distance matrix between customers
vector<vector<double>> distMatrixData;
// Distance between customers and depot
vector<double> distDepotData;
// Number of trucks
int nbTrucks;
// Decision variables
vector<HxExpression> customersSequences;
// Are the trucks actually used
vector<HxExpression> trucksUsed;
// Cumulated lateness in the solution (must be 0 for the solution to be valid)
HxExpression totalLateness;
// Number of trucks used in the solution
HxExpression nbTrucksUsed;
// Distance traveled by all the trucks
HxExpression totalDistance;
Cvrptw() {}
/* Read instance data */
void readInstance(const string& fileName) { readInputCvrptw(fileName); }
void solve(int limit) {
// Declare the optimization model
HxModel model = optimizer.getModel();
// Sequence of customers visited by each truck
customersSequences.resize(nbTrucks);
for (int k = 0; k < nbTrucks; ++k) {
customersSequences[k] = model.listVar(nbCustomers);
}
// All customers must be visited by exactly one truck
model.constraint(model.partition(customersSequences.begin(), customersSequences.end()));
// Create Hexaly arrays to be able to access them with an "at" operator
HxExpression demands = model.array(demandsData.begin(), demandsData.end());
HxExpression earliest = model.array(earliestStartData.begin(), earliestStartData.end());
HxExpression latest = model.array(latestEndData.begin(), latestEndData.end());
HxExpression serviceTime = model.array(serviceTimeData.begin(), serviceTimeData.end());
HxExpression distMatrix = model.array();
for (int n = 0; n < nbCustomers; ++n) {
distMatrix.addOperand(model.array(distMatrixData[n].begin(), distMatrixData[n].end()));
}
HxExpression distDepot = model.array(distDepotData.begin(), distDepotData.end());
trucksUsed.resize(nbTrucks);
vector<HxExpression> distRoutes(nbTrucks), endTime(nbTrucks), homeLateness(nbTrucks), lateness(nbTrucks);
for (int k = 0; k < nbTrucks; ++k) {
HxExpression sequence = customersSequences[k];
HxExpression c = model.count(sequence);
// A truck is used if it visits at least one customer
trucksUsed[k] = c > 0;
// The quantity needed in each route must not exceed the truck capacity
HxExpression demandLambda =
model.createLambdaFunction([&](HxExpression j) { return demands[j]; });
HxExpression routeQuantity = model.sum(sequence, demandLambda);
model.constraint(routeQuantity <= truckCapacity);
// Distance traveled by truck k
HxExpression distLambda = model.createLambdaFunction(
[&](HxExpression i) { return model.at(distMatrix, sequence[i - 1], sequence[i]); });
distRoutes[k] = model.sum(model.range(1, c), distLambda) +
model.iif(c > 0, distDepot[sequence[0]] + distDepot[sequence[c - 1]], 0);
// End of each visit
HxExpression endTimeLambda = model.createLambdaFunction([&](HxExpression i, HxExpression prev) {
return model.max(earliest[sequence[i]],
model.iif(i == 0, distDepot[sequence[0]],
prev + model.at(distMatrix, sequence[i - 1], sequence[i]))) +
serviceTime[sequence[i]];
});
endTime[k] = model.array(model.range(0, c), endTimeLambda, 0);
// Arriving home after max horizon
homeLateness[k] =
model.iif(trucksUsed[k], model.max(0, endTime[k][c - 1] + distDepot[sequence[c - 1]] - maxHorizon), 0);
// Completing visit after latest end
HxExpression lateLambda = model.createLambdaFunction(
[&](HxExpression i) { return model.max(0, endTime[k][i] - latest[sequence[i]]); });
lateness[k] = homeLateness[k] + model.sum(model.range(0, c), lateLambda);
}
// Total lateness
totalLateness = model.sum(lateness.begin(), lateness.end());
// Total number of trucks used
nbTrucksUsed = model.sum(trucksUsed.begin(), trucksUsed.end());
// Total distance traveled (convention in Solomon's instances is to round to 2 decimals)
totalDistance = model.round(100 * model.sum(distRoutes.begin(), distRoutes.end())) / 100;
// Objective: minimize the lateness, then the number of trucks used, then the distance traveled
model.minimize(totalLateness);
model.minimize(nbTrucksUsed);
model.minimize(totalDistance);
model.close();
// Parametrize the optimizer
optimizer.getParam().setTimeLimit(limit);
optimizer.solve();
}
/* Write the solution in a file with the following format:
* - number of trucks used and total distance
* - for each truck the customers visited (omitting the start/end at the depot) */
void writeSolution(const string& fileName) {
ofstream outfile;
outfile.exceptions(ofstream::failbit | ofstream::badbit);
outfile.open(fileName.c_str());
outfile << nbTrucksUsed.getValue() << " " << totalDistance.getDoubleValue() << endl;
for (int k = 0; k < nbTrucks; ++k) {
if (trucksUsed[k].getValue() != 1)
continue;
// Values in sequence are in 0...nbCustomers. +1 is to put it back in 1...nbCustomers+1
// as in the data files (0 being the depot)
HxCollection customersCollection = customersSequences[k].getCollectionValue();
for (int i = 0; i < customersCollection.count(); ++i) {
outfile << customersCollection[i] + 1 << " ";
}
outfile << endl;
}
}
private:
// The input files follow the "Solomon" format
void readInputCvrptw(const string& fileName) {
ifstream infile(fileName.c_str());
if (!infile.is_open()) {
throw std::runtime_error("File cannot be opened.");
}
string str;
long tmp;
int depotX, depotY;
vector<int> customersX;
vector<int> customersY;
getline(infile, str);
getline(infile, str);
getline(infile, str);
getline(infile, str);
infile >> nbTrucks;
infile >> truckCapacity;
getline(infile, str);
getline(infile, str);
getline(infile, str);
getline(infile, str);
infile >> tmp;
infile >> depotX;
infile >> depotY;
infile >> tmp;
infile >> tmp;
infile >> maxHorizon;
infile >> tmp;
while (infile >> tmp) {
int cx, cy, demand, ready, due, service;
infile >> cx;
infile >> cy;
infile >> demand;
infile >> ready;
infile >> due;
infile >> service;
customersX.push_back(cx);
customersY.push_back(cy);
demandsData.push_back(demand);
earliestStartData.push_back(ready);
latestEndData.push_back(due + service); // in input files due date is meant as latest start time
serviceTimeData.push_back(service);
}
nbCustomers = customersX.size();
computeDistanceMatrix(depotX, depotY, customersX, customersY);
infile.close();
}
// Compute the distance matrix
void computeDistanceMatrix(int depotX, int depotY, const vector<int>& customersX, const vector<int>& customersY) {
distMatrixData.resize(nbCustomers);
for (int i = 0; i < nbCustomers; ++i) {
distMatrixData[i].resize(nbCustomers);
}
for (int i = 0; i < nbCustomers; ++i) {
distMatrixData[i][i] = 0;
for (int j = i + 1; j < nbCustomers; ++j) {
double distance = computeDist(customersX[i], customersX[j], customersY[i], customersY[j]);
distMatrixData[i][j] = distance;
distMatrixData[j][i] = distance;
}
}
distDepotData.resize(nbCustomers);
for (int i = 0; i < nbCustomers; ++i) {
distDepotData[i] = computeDist(depotX, customersX[i], depotY, customersY[i]);
}
}
double computeDist(int xi, int xj, int yi, int yj) {
return sqrt(pow((double)xi - xj, 2) + pow((double)yi - yj, 2));
}
};
int main(int argc, char** argv) {
if (argc < 2) {
cerr << "Usage: cvrptw inputFile [outputFile] [timeLimit] [nbTrucks]" << endl;
return 1;
}
const char* instanceFile = argv[1];
const char* solFile = argc > 2 ? argv[2] : NULL;
const char* strTimeLimit = argc > 3 ? argv[3] : "20";
try {
Cvrptw model;
model.readInstance(instanceFile);
model.solve(atoi(strTimeLimit));
if (solFile != NULL)
model.writeSolution(solFile);
return 0;
} catch (const exception& e) {
cerr << "An error occurred: " << e.what() << endl;
return 1;
}
}
- Compilation / Execution (Windows)
-
copy %HX_HOME%\bin\Hexaly.NET.dll .csc Cvrptw.cs /reference:Hexaly.NET.dllCvrptw instances\R101.25.txt
using System;
using System.IO;
using System.Collections.Generic;
using Hexaly.Optimizer;
public class Cvrptw : IDisposable
{
// Hexaly Optimizer
HexalyOptimizer optimizer;
// Number of customers
int nbCustomers;
// Capacity of the trucks
int truckCapacity;
// Latest allowed arrival to depot
int maxHorizon;
// Demand for each customer
List<int> demandsData;
// Earliest arrival for each customer
List<int> earliestStartData;
// Latest departure from each customer
List<int> latestEndData;
// Service time for each customer
List<int> serviceTimeData;
// Distance matrix between customers
double[][] distMatrixData;
// Distances between customers and depot
double[] distDepotData;
// Number of trucks
int nbTrucks;
// Decision variables
HxExpression[] customersSequences;
// Are the trucks actually used
HxExpression[] trucksUsed;
// Cumulated lateness in the solution (must be 0 for the solution to be valid)
HxExpression totalLateness;
// Number of trucks used in the solution
HxExpression nbTrucksUsed;
// Distance traveled by all the trucks
HxExpression totalDistance;
public Cvrptw()
{
optimizer = new HexalyOptimizer();
}
/* Read instance data */
void ReadInstance(string fileName)
{
ReadInputCvrptw(fileName);
}
public void Dispose()
{
if (optimizer != null)
optimizer.Dispose();
}
void Solve(int limit)
{
// Declare the optimization model
HxModel model = optimizer.GetModel();
trucksUsed = new HxExpression[nbTrucks];
customersSequences = new HxExpression[nbTrucks];
HxExpression[] distRoutes = new HxExpression[nbTrucks];
HxExpression[] endTime = new HxExpression[nbTrucks];
HxExpression[] homeLateness = new HxExpression[nbTrucks];
HxExpression[] lateness = new HxExpression[nbTrucks];
// Sequence of customers visited by each truck
for (int k = 0; k < nbTrucks; ++k)
customersSequences[k] = model.List(nbCustomers);
// All customers must be visited by exactly one truck
model.Constraint(model.Partition(customersSequences));
// Create HexalyOptimizer arrays to be able to access them with an "at" operator
HxExpression demands = model.Array(demandsData);
HxExpression earliest = model.Array(earliestStartData);
HxExpression latest = model.Array(latestEndData);
HxExpression serviceTime = model.Array(serviceTimeData);
HxExpression distDepot = model.Array(distDepotData);
HxExpression distMatrix = model.Array(distMatrixData);
for (int k = 0; k < nbTrucks; ++k)
{
HxExpression sequence = customersSequences[k];
HxExpression c = model.Count(sequence);
// A truck is used if it visits at least one customer
trucksUsed[k] = c > 0;
// The quantity needed in each route must not exceed the truck capacity
HxExpression demandLambda = model.LambdaFunction(j => demands[j]);
HxExpression routeQuantity = model.Sum(sequence, demandLambda);
model.Constraint(routeQuantity <= truckCapacity);
// Distance traveled by truck k
HxExpression distLambda = model.LambdaFunction(
i => distMatrix[sequence[i - 1], sequence[i]]
);
distRoutes[k] =
model.Sum(model.Range(1, c), distLambda)
+ model.If(c > 0, distDepot[sequence[0]] + distDepot[sequence[c - 1]], 0);
// End of each visit
HxExpression endTimeLambda = model.LambdaFunction(
(i, prev) =>
model.Max(
earliest[sequence[i]],
model.If(
i == 0,
distDepot[sequence[0]],
prev + distMatrix[sequence[i - 1], sequence[i]]
)
) + serviceTime[sequence[i]]
);
endTime[k] = model.Array(model.Range(0, c), endTimeLambda, 0);
// Arriving home after max_horizon
homeLateness[k] = model.If(
trucksUsed[k],
model.Max(0, endTime[k][c - 1] + distDepot[sequence[c - 1]] - maxHorizon),
0
);
// Completing visit after latest_end
HxExpression lateLambda = model.LambdaFunction(
i => model.Max(endTime[k][i] - latest[sequence[i]], 0)
);
lateness[k] = homeLateness[k] + model.Sum(model.Range(0, c), lateLambda);
}
// Total lateness
totalLateness = model.Sum(lateness);
// Total number of trucks used
nbTrucksUsed = model.Sum(trucksUsed);
// Total distance traveled (convention in Solomon's instances is to round to 2 decimals)
totalDistance = model.Round(100 * model.Sum(distRoutes)) / 100;
// Objective: minimize the lateness, then the number of trucks used, then the distance traveled
model.Minimize(totalLateness);
model.Minimize(nbTrucksUsed);
model.Minimize(totalDistance);
model.Close();
// Parametrize the optimizer
optimizer.GetParam().SetTimeLimit(limit);
optimizer.Solve();
}
/* Write the solution in a file with the following format:
* - number of trucks used and total distance
* - for each truck the customers visited (omitting the start/end at the depot) */
void WriteSolution(string fileName)
{
using (StreamWriter output = new StreamWriter(fileName))
{
output.WriteLine(nbTrucksUsed.GetValue() + " " + totalDistance.GetDoubleValue());
for (int k = 0; k < nbTrucks; ++k)
{
if (trucksUsed[k].GetValue() != 1)
continue;
// Values in sequence are in 0...nbCustomers. +1 is to put it back in 1...nbCustomers+1
// as in the data files (0 being the depot)
HxCollection customersCollection = customersSequences[k].GetCollectionValue();
for (int i = 0; i < customersCollection.Count(); ++i)
output.Write((customersCollection[i] + 1) + " ");
output.WriteLine();
}
}
}
public static void Main(string[] args)
{
if (args.Length < 1)
{
Console.WriteLine("Usage: Cvrptw inputFile [solFile] [timeLimit]");
Environment.Exit(1);
}
string instanceFile = args[0];
string outputFile = args.Length > 1 ? args[1] : null;
string strTimeLimit = args.Length > 2 ? args[2] : "20";
using (Cvrptw model = new Cvrptw())
{
model.ReadInstance(instanceFile);
model.Solve(int.Parse(strTimeLimit));
if (outputFile != null)
model.WriteSolution(outputFile);
}
}
private string[] SplitInput(StreamReader input)
{
string line = input.ReadLine();
if (line == null)
return new string[0];
return line.Split(new[] { ' ' }, StringSplitOptions.RemoveEmptyEntries);
}
// The input files follow the "Solomon" format
private void ReadInputCvrptw(string fileName)
{
using (StreamReader input = new StreamReader(fileName))
{
string[] splitted;
input.ReadLine();
input.ReadLine();
input.ReadLine();
input.ReadLine();
splitted = SplitInput(input);
nbTrucks = int.Parse(splitted[0]);
truckCapacity = int.Parse(splitted[1]);
input.ReadLine();
input.ReadLine();
input.ReadLine();
input.ReadLine();
splitted = SplitInput(input);
int depotX = int.Parse(splitted[1]);
int depotY = int.Parse(splitted[2]);
maxHorizon = int.Parse(splitted[5]);
List<int> customersX = new List<int>();
List<int> customersY = new List<int>();
demandsData = new List<int>();
earliestStartData = new List<int>();
latestEndData = new List<int>();
serviceTimeData = new List<int>();
while (!input.EndOfStream)
{
splitted = SplitInput(input);
if (splitted.Length < 7)
break;
customersX.Add(int.Parse(splitted[1]));
customersY.Add(int.Parse(splitted[2]));
demandsData.Add(int.Parse(splitted[3]));
int ready = int.Parse(splitted[4]);
int due = int.Parse(splitted[5]);
int service = int.Parse(splitted[6]);
earliestStartData.Add(ready);
latestEndData.Add(due + service); // in input files due date is meant as latest start time
serviceTimeData.Add(service);
}
nbCustomers = customersX.Count;
ComputeDistanceMatrix(depotX, depotY, customersX, customersY);
}
}
// Compute the distance matrix
private void ComputeDistanceMatrix(
int depotX,
int depotY,
List<int> customersX,
List<int> customersY
)
{
distMatrixData = new double[nbCustomers][];
for (int i = 0; i < nbCustomers; ++i)
distMatrixData[i] = new double[nbCustomers];
for (int i = 0; i < nbCustomers; ++i)
{
distMatrixData[i][i] = 0;
for (int j = i + 1; j < nbCustomers; ++j)
{
double dist = ComputeDist(
customersX[i],
customersX[j],
customersY[i],
customersY[j]
);
distMatrixData[i][j] = dist;
distMatrixData[j][i] = dist;
}
}
distDepotData = new double[nbCustomers];
for (int i = 0; i < nbCustomers; ++i)
distDepotData[i] = ComputeDist(depotX, customersX[i], depotY, customersY[i]);
}
private double ComputeDist(int xi, int xj, int yi, int yj)
{
return Math.Sqrt(Math.Pow(xi - xj, 2) + Math.Pow(yi - yj, 2));
}
}
- Compilation / Execution (Windows)
-
javac Cvrptw.java -cp %HX_HOME%\bin\hexaly.jarjava -cp %HX_HOME%\bin\hexaly.jar;. Cvrptw instances\R101.25.txt
- Compilation / Execution (Linux)
-
javac Cvrptw.java -cp /opt/hexaly_13_0/bin/hexaly.jarjava -cp /opt/hexaly_13_0/bin/hexaly.jar:. Cvrptw instances/R101.25.txt
import java.util.*;
import java.io.*;
import com.hexaly.optimizer.*;
public class Cvrptw {
// Hexaly Optimizer
private final HexalyOptimizer optimizer;
// Number of customers
int nbCustomers;
// Capacity of the trucks
private int truckCapacity;
// Latest allowed arrival to depot
int maxHorizon;
// Demand for each customer
List<Integer> demandsData;
// Earliest arrival for each customer
List<Integer> earliestStartData;
// Latest departure from each customer
List<Integer> latestEndData;
// Service time for each customer
List<Integer> serviceTimeData;
// Distance matrix
private double[][] distMatrixData;
// Distances between customers and depot
private double[] distDepotData;
// Number of trucks
private int nbTrucks;
// Decision variables
private HxExpression[] customersSequences;
// Are the trucks actually used
private HxExpression[] trucksUsed;
// Distance traveled by each truck
private HxExpression[] distRoutes;
// End time array for each truck
private HxExpression[] endTime;
// Home lateness for each truck
private HxExpression[] homeLateness;
// Cumulated Lateness for each truck
private HxExpression[] lateness;
// Cumulated lateness in the solution (must be 0 for the solution to be valid)
private HxExpression totalLateness;
// Number of trucks used in the solution
private HxExpression nbTrucksUsed;
// Distance traveled by all the trucks
private HxExpression totalDistance;
private Cvrptw(HexalyOptimizer optimizer) {
this.optimizer = optimizer;
}
/* Read instance data */
private void readInstance(String fileName) throws IOException {
readInputCvrptw(fileName);
}
private void solve(int limit) {
// Declare the optimization model
HxModel m = optimizer.getModel();
trucksUsed = new HxExpression[nbTrucks];
customersSequences = new HxExpression[nbTrucks];
distRoutes = new HxExpression[nbTrucks];
endTime = new HxExpression[nbTrucks];
homeLateness = new HxExpression[nbTrucks];
lateness = new HxExpression[nbTrucks];
// Sequence of customers visited by each truck.
for (int k = 0; k < nbTrucks; ++k)
customersSequences[k] = m.listVar(nbCustomers);
// All customers must be visited by exactly one truck
m.constraint(m.partition(customersSequences));
// Create HexalyOptimizer arrays to be able to access them with an "at" operator
HxExpression demands = m.array(demandsData);
HxExpression earliest = m.array(earliestStartData);
HxExpression latest = m.array(latestEndData);
HxExpression serviceTime = m.array(serviceTimeData);
HxExpression distDepot = m.array(distDepotData);
HxExpression distMatrix = m.array(distMatrixData);
for (int k = 0; k < nbTrucks; ++k) {
HxExpression sequence = customersSequences[k];
HxExpression c = m.count(sequence);
// A truck is used if it visits at least one customer
trucksUsed[k] = m.gt(c, 0);
// The quantity needed in each route must not exceed the truck capacity
HxExpression demandLambda = m.lambdaFunction(j -> m.at(demands, j));
HxExpression routeQuantity = m.sum(sequence, demandLambda);
m.constraint(m.leq(routeQuantity, truckCapacity));
// Distance traveled by truck k
HxExpression distLambda = m
.lambdaFunction(i -> m.at(distMatrix, m.at(sequence, m.sub(i, 1)), m.at(sequence, i)));
distRoutes[k] = m.sum(m.sum(m.range(1, c), distLambda), m.iif(m.gt(c, 0),
m.sum(m.at(distDepot, m.at(sequence, 0)), m.at(distDepot, m.at(sequence, m.sub(c, 1)))), 0));
// End of each visit
HxExpression endTimeLambda = m.lambdaFunction((i, prev) -> m.sum(
m.max(m.at(earliest, m.at(sequence, i)),
m.sum(m.iif(m.eq(i, 0), m.at(distDepot, m.at(sequence, 0)),
m.sum(prev, m.at(distMatrix, m.at(sequence, m.sub(i, 1)), m.at(sequence, i)))))),
m.at(serviceTime, m.at(sequence, i))));
endTime[k] = m.array(m.range(0, c), endTimeLambda, 0);
HxExpression theEnd = endTime[k];
// Arriving home after max_horizon
homeLateness[k] = m.iif(trucksUsed[k],
m.max(0,
m.sum(m.at(theEnd, m.sub(c, 1)), m.sub(m.at(distDepot, m.at(sequence, m.sub(c, 1))), maxHorizon))),
0);
// completing visit after latest_end
HxExpression lateLambda = m
.lambdaFunction(i -> m.max(m.sub(m.at(theEnd, i), m.at(latest, m.at(sequence, i))), 0));
lateness[k] = m.sum(homeLateness[k], m.sum(m.range(0, c), lateLambda));
}
totalLateness = m.sum(lateness);
nbTrucksUsed = m.sum(trucksUsed);
totalDistance = m.div(m.round(m.prod(100, m.sum(distRoutes))), 100);
// Objective: minimize the number of trucks used, then minimize the distance traveled
m.minimize(totalLateness);
m.minimize(nbTrucksUsed);
m.minimize(totalDistance);
m.close();
// Parametrize the optimizer
optimizer.getParam().setTimeLimit(limit);
optimizer.solve();
}
// Write the solution in a file with the following format:
// - number of trucks used and total distance
// - for each truck the customers visited (omitting the start/end at the depot)
private void writeSolution(String fileName) throws IOException {
try (PrintWriter output = new PrintWriter(fileName)) {
output.println(nbTrucksUsed.getValue() + " " + totalDistance.getDoubleValue());
for (int k = 0; k < nbTrucks; ++k) {
if (trucksUsed[k].getValue() != 1)
continue;
// Values in sequence are in 0...nbCustomers. +1 is to put it back in 1...nbCustomers+1
// as in the data files (0 being the depot)
HxCollection customersCollection = customersSequences[k].getCollectionValue();
for (int i = 0; i < customersCollection.count(); ++i) {
output.print((customersCollection.get(i) + 1) + " ");
}
output.println();
}
}
}
// The input files follow the "Solomon" format
private void readInputCvrptw(String fileName) throws IOException {
try (Scanner input = new Scanner(new File(fileName))) {
input.nextLine();
input.nextLine();
input.nextLine();
input.nextLine();
nbTrucks = input.nextInt();
truckCapacity = input.nextInt();
input.nextLine();
input.nextLine();
input.nextLine();
input.nextLine();
input.nextInt();
int depotX = input.nextInt();
int depotY = input.nextInt();
input.nextInt();
input.nextInt();
maxHorizon = input.nextInt();
input.nextInt();
List<Integer> customersX = new ArrayList<Integer>();
List<Integer> customersY = new ArrayList<Integer>();
demandsData = new ArrayList<Integer>();
earliestStartData = new ArrayList<Integer>();
latestEndData = new ArrayList<Integer>();
serviceTimeData = new ArrayList<Integer>();
while (input.hasNextInt()) {
input.nextInt();
int cx = input.nextInt();
int cy = input.nextInt();
int demand = input.nextInt();
int ready = input.nextInt();
int due = input.nextInt();
int service = input.nextInt();
customersX.add(cx);
customersY.add(cy);
demandsData.add(demand);
earliestStartData.add(ready);
latestEndData.add(due + service);// in input files due date is meant as latest start time
serviceTimeData.add(service);
}
nbCustomers = customersX.size();
computeDistanceMatrix(depotX, depotY, customersX, customersY);
}
}
// Computes the distance matrix
private void computeDistanceMatrix(int depotX, int depotY, List<Integer> customersX, List<Integer> customersY) {
distMatrixData = new double[nbCustomers][nbCustomers];
for (int i = 0; i < nbCustomers; ++i) {
distMatrixData[i][i] = 0;
for (int j = i + 1; j < nbCustomers; ++j) {
double dist = computeDist(customersX.get(i), customersX.get(j), customersY.get(i), customersY.get(j));
distMatrixData[i][j] = dist;
distMatrixData[j][i] = dist;
}
}
distDepotData = new double[nbCustomers];
for (int i = 0; i < nbCustomers; ++i) {
distDepotData[i] = computeDist(depotX, customersX.get(i), depotY, customersY.get(i));
}
}
private double computeDist(int xi, int xj, int yi, int yj) {
return Math.sqrt(Math.pow(xi - xj, 2) + Math.pow(yi - yj, 2));
}
public static void main(String[] args) {
if (args.length < 1) {
System.err.println("Usage: java Cvrptw inputFile [outputFile] [timeLimit] [nbTrucks]");
System.exit(1);
}
try (HexalyOptimizer optimizer = new HexalyOptimizer()) {
String instanceFile = args[0];
String outputFile = args.length > 1 ? args[1] : null;
String strTimeLimit = args.length > 2 ? args[2] : "20";
Cvrptw model = new Cvrptw(optimizer);
model.readInstance(instanceFile);
model.solve(Integer.parseInt(strTimeLimit));
if (outputFile != null) {
model.writeSolution(outputFile);
}
} catch (Exception ex) {
System.err.println(ex);
ex.printStackTrace();
System.exit(1);
}
}
}
Results
Hexaly Optimizer reaches an average optimality gap of 1.8% for the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW) in 1 minute of running time on the Solomon, Gehring, and Homberger research benchmark. Our Capacitated Vehicle Routing Problem with Time Windows (CVRPTW) benchmark page illustrates how Hexaly Optimizer outperforms traditional general-purpose optimization solvers, like Gurobi and OR-Tools, on this challenging problem.