Toy
Problem
We describe a toy instance of the Knapsack Problem. We consider 8 items, with weights 10, 60, 30, 40, 30, 20, 20, 2, and values 1, 10, 15, 40, 60, 90, 100, 15 respectively. The goal is to determine a subset of items such that the total weight is less than 102 and the total value is as large as possible.
Principles learned
- Learn about Hexaly Optimizer’s modeling style: distinguish decision variables from intermediate expressions
Program
We model this toy problem as an Integer Program. For each item, we define a Boolean decision variable equal to 1 if the item is selected and 0 otherwise. We compute the total weight of selected items using the ‘sum’ operator. Note that we deduce this value from those of the decisions: the total weight is an intermediate expression, not a decision. After defining it, we can constrain the total weight to be lower than 102. Similarly, we define another intermediate expression, corresponding to the total value of selected items. Finally, we maximize this total value.
- Execution
-
hexaly toy.hxm
/* Declare the optimization model */
function model() {
// 0-1 decisions
x_0 <- bool(); x_1 <- bool(); x_2 <- bool(); x_3 <- bool();
x_4 <- bool(); x_5 <- bool(); x_6 <- bool(); x_7 <- bool();
// Weight constraint
knapsackWeight <- 10 * x_0 + 60 * x_1 + 30 * x_2 + 40 * x_3 + 30 * x_4 + 20 * x_5 + 20 * x_6 + 2 * x_7;
constraint knapsackWeight <= 102;
// Maximize value
knapsackValue <- 1 * x_0 + 10 * x_1 + 15 * x_2 + 40 * x_3 + 60 * x_4 + 90 * x_5 + 100 * x_6 + 15 * x_7;
maximize knapsackValue;
}
/* Parametrize the solver */
function param() {
hxTimeLimit = 10;
}
- Execution (Windows)
-
set PYTHONPATH=%HX_HOME%\bin\pythonpython toy.py
- Execution (Linux)
-
export PYTHONPATH=/opt/hexaly_13_0/bin/pythonpython toy.py
import hexaly.optimizer
with hexaly.optimizer.HexalyOptimizer() as optimizer:
weights = [10, 60, 30, 40, 30, 20, 20, 2]
values = [1, 10, 15, 40, 60, 90, 100, 15]
knapsack_bound = 102
#
# Declare the optimization model
#
model = optimizer.model
# 0-1 decisions
x = [model.bool() for _ in range(8)]
# Weight constraint
knapsack_weight = model.sum(weights[i] * x[i] for i in range(8))
model.constraint(knapsack_weight <= knapsack_bound)
# Maximize value
knapsack_value = model.sum(values[i] * x[i] for i in range(8))
model.maximize(knapsack_value)
model.close()
# Parameterize the optimizer
optimizer.param.time_limit = 10
optimizer.solve()
- Compilation / Execution (Windows)
-
cl /EHsc toy.cpp -I%HX_HOME%\include /link %HX_HOME%\bin\hexaly130.libtoy
- Compilation / Execution (Linux)
-
g++ toy.cpp -I/opt/hexaly_13_0/include -lhexaly130 -lpthread -o toytoy
#include "optimizer/hexalyoptimizer.h"
#include <iostream>
using namespace hexaly;
using namespace std;
int main() {
try {
hxint weights[] = {10, 60, 30, 40, 30, 20, 20, 2};
hxint values[] = {1, 10, 15, 40, 60, 90, 100, 15};
hxint knapsackBound = 102;
// Declare the optimization model
HexalyOptimizer optimizer;
HxModel model = optimizer.getModel();
// 0-1 decisions
HxExpression x[8];
for (int i = 0; i < 8; ++i)
x[i] = model.boolVar();
// knapsackWeight <- 10*x0 + 60*x1 + 30*x2 + 40*x3 + 30*x4 + 20*x5 + 20*x6 + 2*x7;
HxExpression knapsackWeight = model.sum();
for (int i = 0; i < 8; ++i)
knapsackWeight.addOperand(weights[i] * x[i]);
// knapsackWeight <= 102;
model.constraint(knapsackWeight <= knapsackBound);
// knapsackValue <- 1*x0 + 10*x1 + 15*x2 + 40*x3 + 60*x4 + 90*x5 + 100*x6 + 15*x7;
HxExpression knapsackValue = model.sum();
for (int i = 0; i < 8; ++i)
knapsackValue.addOperand(values[i] * x[i]);
// maximize knapsackValue;
model.maximize(knapsackValue);
// Close model before solving it
model.close();
// Parametrize the optimizer
optimizer.getParam().setTimeLimit(10);
optimizer.solve();
} catch (const exception& e) {
cerr << "An error occurred:" << e.what() << endl;
return 1;
}
return 0;
}
- Compilation / Execution (Windows)
-
copy %HX_HOME%\bin\Hexaly.NET.dll .csc Toy.cs /reference:Hexaly.NET.dllToy
using Hexaly.Optimizer;
public class Toy
{
public static void Main()
{
int[] weights = { 10, 60, 30, 40, 30, 20, 20, 2 };
int[] values = { 1, 10, 15, 40, 60, 90, 100, 15 };
using (HexalyOptimizer optimizer = new HexalyOptimizer())
{
// Declare the optimization model
HxModel model = optimizer.GetModel();
// 0-1 decisions
HxExpression[] x = new HxExpression[8];
for (int i = 0; i < 8; ++i)
x[i] = model.Bool();
// knapsackWeight <- 10*x0 + 60*x1 + 30*x2 + 40*x3 + 30*x4 + 20*x5 + 20*x6 + 2*x7;
HxExpression knapsackWeight = model.Sum();
for (int i = 0; i < 8; ++i)
knapsackWeight.AddOperand(weights[i] * x[i]);
// knapsackWeight <= 102;
model.Constraint(knapsackWeight <= 102);
// knapsackValue <- 1*x0 + 10*x1 + 15*x2 + 40*x3 + 60*x4 + 90*x5 + 100*x6 + 15*x7;
HxExpression knapsackValue = model.Sum();
for (int i = 0; i < 8; ++i)
knapsackValue.AddOperand(values[i] * x[i]);
// maximize knapsackValue;
model.Maximize(knapsackValue);
// Close the model before solving it
model.Close();
// Parametrize the optimizer
optimizer.GetParam().SetTimeLimit(10);
optimizer.Solve();
}
}
}
- Compilation / Execution (Windows)
-
javac Toy.java -cp %HX_HOME%\bin\hexaly.jarjava -cp %HX_HOME%\bin\hexaly.jar;. Toy
- Compilation / Execution (Linux)
-
javac Toy.java -cp /opt/hexaly_13_0/bin/hexaly.jarjava -cp /opt/hexaly_13_0/bin/hexaly.jar:. Toy
import com.hexaly.optimizer.*;
public class Toy {
public static void main(String[] args) {
int[] weights = { 10, 60, 30, 40, 30, 20, 20, 2 };
int[] values = { 1, 10, 15, 40, 60, 90, 100, 15 };
// Declare the optimization model
try (HexalyOptimizer optimizer = new HexalyOptimizer()) {
HxModel model = optimizer.getModel();
// 0-1 decisions
HxExpression[] x = new HxExpression[8];
for (int i = 0; i < 8; ++i) {
x[i] = model.boolVar();
}
// knapsackWeight <- 10*x0 + 60*x1 + 30*x2 + 40*x3 + 30*x4 + 20*x5 + 20*x6 + 2*x7;
HxExpression knapsackWeight = model.sum();
for (int i = 0; i < 8; ++i) {
knapsackWeight.addOperand(model.prod(weights[i], x[i]));
}
// knapsackWeight <= 102;
model.constraint(model.leq(knapsackWeight, 102));
// knapsackValue <- 1*x0 + 10*x1 + 15*x2 + 40*x3 + 60*x4 + 90*x5 + 100*x6 + 15*x7;
HxExpression knapsackValue = model.sum();
for (int i = 0; i < 8; ++i) {
knapsackValue.addOperand(model.prod(values[i], x[i]));
}
// maximize knapsackValue;
model.maximize(knapsackValue);
// Close model before solving it
model.close();
// Parametrize the optimizer
optimizer.getParam().setTimeLimit(10);
optimizer.solve();
} catch (Exception ex) {
System.err.println(ex);
ex.printStackTrace();
System.exit(1);
}
}
}