Location Routing Problem (LRP)
Problem
In the Location Routing Problem (LRP), which is an extension of the Capacitated Vehicle Routing Problem (CVRP), a fleet of delivery vehicles with uniform capacity must service customers with known demand for a single commodity. Contrary to the CVRP, which treats the LRP problem with only one depot location, several depot locations are available, each of them having its own opening cost and capacity. The vehicles start and end their routes at the same depot. Each customer must be served by exactly one vehicle, and the total demand served by each vehicle and each depot must not exceed its capacity. The objective is to minimize the total cost, which is the sum of the route lengths and opening costs for the depots and the routes.
Principles learned
- Add list decision variables to model the trucks’ sequences of customers
- Add set decision variables to model the depots’ associated trucks
- Retrieve the index of each truck’s depot thanks to the ‘find‘ operator
- Define lambda functions to compute the traveled distance
Data
The instances we provide come from the S. Barreto instances. The format of the data files is as follows:
- The number of customers
- The number of depots
- The x and y coordinates of the depots and the customers
- The capacity of the delivery vehicles
- The capacity of each depot
- The demand for every customer
- The opening cost of each depot
- The opening cost of a route
- A Boolean value, indicating whether costs should be rounded.
Program
The Hexaly model for the Location Routing Problem (LRP) uses list decision variables. For each truck, we define a list variable representing the sequence of customers it visits. Using a ‘partition’ constraint on all the lists, we ensure that each customer is served by exactly one truck. In addition, we also use set decision variables. For each depot, we define a set variable representing the trucks starting and ending their routes at this depot. Using another ‘partition’ constraint on the sets, we ensure that each truck is associated with a depot.
The total quantity delivered by each truck is computed with a lambda function to apply the ‘sum’ operator over all visited customers. Note that the number of terms in this sum varies during the search, along with the size of the list. We can then constrain this quantity to be lower than the truck capacity.
Using the ‘find‘ operator, we can then retrieve the index of the depot associated with each truck. This allows us to compute the distance from each truck’s depot to its first customer, and from its last customer back to its depot. To compute the total length of each route, we also need to know the distance from one customer to the next: we use another lambda function to sum the distances along the route.
A route is considered open if it serves at least one customer, and a depot is considered open if at least one non-empty sequence uses it. These conditions are computed thanks to the ‘count’ operator.
Finally, we can compute the objective function, by summing the total length of the routes and the opening costs of each open route and depot.
- Execution
-
hexaly location_routing_problem.hxm inFileName=instances/coordChrist100.dat [hxTimeLimit=] [solFileName=]
use io;
/* Read instance data */
function input() {
local usage = "Usage: hexaly location_routing_problem.hxm "
+ "inFileName=inputFile [solFileName=outputFile] [hxTimeLimit=timeLimit]";
if (inFileName == nil) throw usage;
readInputLrp();
computeDistances();
minNbTrucks = ceil(sum[c in 0...nbCustomers](demands[c]) / truckCapacity);
nbTrucks = ceil(1.5 * minNbTrucks);
}
/* Declare the optimization model */
function model() {
// A route is represented as a list containing the customers in the order they are
// visited
customersSequences[r in 0...nbTrucks] <- list(nbCustomers);
// A depot is represented as a set containing the associated customersSequences
depots[d in 0...nbDepots] <- set(nbTrucks);
// All customers should be assigned to a route
constraint partition(customersSequences);
// All the customersSequences should be assigned to a depot
constraint partition(depots);
for [r in 0...nbTrucks] {
local sequence <- customersSequences[r];
local c <- count(sequence);
quantityServed[r] <- sum(sequence, j => demands[j]);
// The quantity needed in each route must not exceed the vehicle capacity
constraint quantityServed[r] <= truckCapacity;
// A route is used if it serves at least one customer
sequenceUsed[r] <- c > 0;
// The "find" function gets the depot that is assigned to the route
associatedDepot[r] <- find(depots, r);
sequenceLength[r] <- sum(0...c-1, i => distCustomers[sequence[i]][sequence[i + 1]])
+ (sequenceUsed[r] ? distCustomersDepots[sequence[0]][associatedDepot[r]]
+ distCustomersDepots[sequence[c - 1]][associatedDepot[r]] : 0);
// The route cost is the sum of the opening cost and the route length
routeCost[r] <- sequenceLength[r] + sequenceUsed[r] * openingRouteCost;
}
for [d in 0...nbDepots] {
// The total demand served by a depot must not exceed its capacity
constraint sum(depots[d], i => quantityServed[i]) <= depotsCapacity[d];
// A depot is open if at least a route starts from there
isDepotOpen[d] <- count(depots[d]) > 0;
}
depotsCost <- sum[d in 0...nbDepots](isDepotOpen[d] * openingCostDepots[d]);
routingCost <- sum[r in 0...nbTrucks](routeCost[r]);
totalCost <- routingCost + depotsCost;
minimize totalCost;
}
function param() {
if (hxTimeLimit == nil) hxTimeLimit = 20;
}
/* Write the solution in a file */
function output() {
if (solFileName == nil) return;
local resFile = io.openWrite(solFileName);
resFile.println("File name: ", inFileName + "; totalCost = " + totalCost.value);
for [r in 0...nbTrucks] {
if (sequenceUsed[r].value) {
resFile.print("Route ", r, ", assigned to depot ", associatedDepot[r].value, ": ");
for [customer in customersSequences[r].value] {
resFile.print(customer, " ");
}
resFile.println();
}
}
resFile.close();
}
function readInputLrp() {
if (inFileName.endsWith(".dat")) readInputDat();
else throw "Unknown file format";
}
function readInputDat() {
local inFile = io.openRead(inFileName);
nbCustomers = inFile.readInt();
nbDepots = inFile.readInt();
coordinatesDepots[d in 0...nbDepots][l in 0...2] = inFile.readDouble();
coordinatesCustomers[c in 0...nbCustomers][l in 0...2] = inFile.readDouble();
truckCapacity = inFile.readInt();
depotsCapacity[d in 0...nbDepots] = inFile.readInt();
demands[c in 0...nbCustomers] = inFile.readInt();
local tempOpeningCostDepots[d in 0...nbDepots] = inFile.readDouble();
local tempOpeningCostRoute = inFile.readDouble();
areCostsDouble = inFile.readInt();
if (areCostsDouble == 1) {
openingCostDepots[d in 0...nbDepots] = tempOpeningCostDepots[d];
openingRouteCost = tempOpeningCostRoute;
} else {
openingCostDepots[d in 0...nbDepots] = round(tempOpeningCostDepots[d]);
openingRouteCost = round(tempOpeningCostRoute);
}
}
function computeDistances() {
local tempDistanceCustomers[c0 in 0...nbCustomers][c1 in 0...nbCustomers] =
sqrt(pow((coordinatesCustomers[c0][0] - coordinatesCustomers[c1][0]), 2)
+ pow((coordinatesCustomers[c0][1] - coordinatesCustomers[c1][1]), 2));
local tempDistanceCustomersDepots[c in 0...nbCustomers][d in 0...nbDepots] =
sqrt(pow((coordinatesCustomers[c][0] - coordinatesDepots[d][0]), 2)
+ pow((coordinatesCustomers[c][1] - coordinatesDepots[d][1]), 2));
if (areCostsDouble == 1) {
distCustomers[c0 in 0...nbCustomers][c1 in 0...nbCustomers] =
tempDistanceCustomers[c0][c1];
distCustomersDepots[c in 0...nbCustomers][d in 0...nbDepots] =
tempDistanceCustomersDepots[c][d];
} else {
distCustomers[c0 in 0...nbCustomers][c1 in 0...nbCustomers] =
ceil(100 * tempDistanceCustomers[c0][c1]);
distCustomersDepots[c in 0...nbCustomers][d in 0...nbDepots] =
ceil(100 * tempDistanceCustomersDepots[c][d]);
}
}
- Execution (Windows)
-
set PYTHONPATH=%HX_HOME%\bin\pythonpython location_routing_problem.py instances\coordChrist100.da
- Execution (Linux)
-
export PYTHONPATH=/opt/hexaly_13_0/bin/pythonpython location_routing_problem.py instances/coordChrist100.dat
import hexaly.optimizer
import sys
import math
def read_elem(filename):
with open(filename) as f:
return [str(elem) for elem in f.read().split()]
def main(instance_file, str_time_limit, sol_file):
#
# Read instance data
#
nb_customers, nb_depots, vehicle_capacity, opening_route_cost, demands_data, \
capacity_depots, opening_depots_cost, dist_matrix_data, dist_depots_data = \
read_input_lrp(instance_file)
min_nb_trucks = int(math.ceil(sum(demands_data) / vehicle_capacity))
nb_trucks = int(math.ceil(1.5 * min_nb_trucks))
with hexaly.optimizer.HexalyOptimizer() as optimizer:
#
# Declare the optimization model
#
m = optimizer.model
# A route is represented as a list containing the customers in the order they are
# visited
customers_sequences = [m.list(nb_customers) for _ in range(nb_trucks)]
# All customers should be assigned to a route
m.constraint(m.partition(customers_sequences))
# A depot is represented as a set containing the associated sequences
depots = [m.set(nb_trucks) for _ in range(nb_depots)]
# All the sequences should be assigned to a depot
m.constraint(m.partition(depots))
route_costs = [None] * nb_trucks
sequence_used = [None] * nb_trucks
dist_routes = [None] * nb_trucks
associated_depot = [None] * nb_trucks
# Create Hexaly arrays to be able to access them with "at" operators
demands = m.array(demands_data)
dist_matrix = m.array()
dist_depots = m.array()
quantity_served = m.array()
for i in range(nb_customers):
dist_matrix.add_operand(m.array(dist_matrix_data[i]))
dist_depots.add_operand(m.array(dist_depots_data[i]))
for r in range(nb_trucks):
sequence = customers_sequences[r]
c = m.count(sequence)
# A sequence is used if it serves at least one customer
sequence_used[r] = c > 0
# The "find" function gets the depot that is assigned to the sequence
associated_depot[r] = m.find(m.array(depots), r)
# The quantity needed in each sequence must not exceed the vehicle capacity
demand_lambda = m.lambda_function(lambda j: demands[j])
quantity_served.add_operand(m.sum(sequence, demand_lambda))
m.constraint(quantity_served[r] <= vehicle_capacity)
# Distance traveled by each truck
dist_lambda = m.lambda_function(
lambda i: m.at(dist_matrix, sequence[i], sequence[i + 1]))
depot = associated_depot[r]
dist_routes[r] = m.sum(m.range(0, c - 1), dist_lambda) + m.iif(
sequence_used[r],
m.at(dist_depots, sequence[0], depot)
+ m.at(dist_depots, sequence[c - 1], depot),
0)
# The sequence cost is the sum of the opening cost and the sequence length
route_costs[r] = sequence_used[r] * opening_route_cost + dist_routes[r]
depot_cost = [None] * nb_depots
for d in range(nb_depots):
# A depot is open if at least one sequence starts from there
depot_cost[d] = (m.count(depots[d]) > 0) * opening_depots_cost[d]
# The total demand served by a depot must not exceed its capacity
depot_lambda = m.lambda_function(lambda r: quantity_served[r])
depot_quantity = m.sum(depots[d], depot_lambda)
m.constraint(depot_quantity <= capacity_depots[d])
depots_cost = m.sum(depot_cost)
routing_cost = m.sum(route_costs)
totalCost = routing_cost + depots_cost
m.minimize(totalCost)
m.close()
# Parameterize the optimizer
optimizer.param.time_limit = int(str_time_limit)
optimizer.solve()
if sol_file != None:
with open(sol_file, 'w') as file:
file.write("File name: %s; totalCost = %d \n" % (instance_file, totalCost.value))
for r in range(nb_trucks):
if sequence_used[r].value:
file.write("Route %d, assigned to depot %d: " % (r, associated_depot[r].value))
for customer in customers_sequences[r].value:
file.write("%d " % customer)
file.write("\n")
def read_input_lrp_dat(filename):
file_it = iter(read_elem(filename))
nb_customers = int(next(file_it))
nb_depots = int(next(file_it))
x_depot = [None] * nb_depots
y_depot = [None] * nb_depots
for i in range(nb_depots):
x_depot[i] = int(next(file_it))
y_depot[i] = int(next(file_it))
x_customer = [None] * nb_customers
y_customer = [None] * nb_customers
for i in range(nb_customers):
x_customer[i] = int(next(file_it))
y_customer[i] = int(next(file_it))
vehicle_capacity = int(next(file_it))
capacity_depots = [None] * nb_depots
for i in range(nb_depots):
capacity_depots[i] = int(next(file_it))
demands = [None] * nb_customers
for i in range(nb_customers):
demands[i] = int(next(file_it))
temp_opening_cost_depot = [None] * nb_depots
for i in range(nb_depots):
temp_opening_cost_depot[i] = float(next(file_it))
temp_opening_route_cost = int(next(file_it))
are_cost_double = int(next(file_it))
opening_depots_cost = [None] * nb_depots
if are_cost_double == 1:
opening_depots_cost = temp_opening_cost_depot
opening_route_cost = temp_opening_route_cost
else:
opening_route_cost = round(temp_opening_route_cost)
for i in range(nb_depots):
opening_depots_cost[i] = round(temp_opening_cost_depot[i])
distance_customers = compute_distance_matrix(x_customer, y_customer, are_cost_double)
distance_customers_depots = compute_distance_depot(x_customer, y_customer,
x_depot, y_depot, are_cost_double)
return nb_customers, nb_depots, vehicle_capacity, opening_route_cost, demands, \
capacity_depots, opening_depots_cost, distance_customers, distance_customers_depots
# Compute the distance matrix
def compute_distance_matrix(customers_x, customers_y, are_cost_double):
nb_customers = len(customers_x)
dist_customers = [[None for _ in range(nb_customers)] for _ in range(nb_customers)]
for i in range(nb_customers):
dist_customers[i][i] = 0
for j in range(nb_customers):
dist = compute_dist(customers_x[i], customers_x[j],
customers_y[i], customers_y[j], are_cost_double)
dist_customers[i][j] = dist
dist_customers[j][i] = dist
return dist_customers
# Compute the distance depot matrix
def compute_distance_depot(customers_x, customers_y, depot_x, depot_y, are_cost_double):
nb_customers = len(customers_x)
nb_depots = len(depot_x)
distance_customers_depots = [[None for _ in range(nb_depots)] for _ in range(nb_customers)]
for i in range(nb_customers):
for d in range(nb_depots):
dist = compute_dist(customers_x[i], depot_x[d],
customers_y[i], depot_y[d], are_cost_double)
distance_customers_depots[i][d] = dist
return distance_customers_depots
def compute_dist(xi, xj, yi, yj, are_cost_double):
dist = math.sqrt(math.pow(xi - xj, 2) + math.pow(yi - yj, 2))
if are_cost_double == 0:
dist = math.ceil(100 * dist)
return dist
def read_input_lrp(filename):
if filename.endswith(".dat"):
return read_input_lrp_dat(filename)
else:
raise Exception("Unknown file format")
if __name__ == '__main__':
if len(sys.argv) < 2:
print("Usage: python location_routing_problem.py input_file \
[output_file] [time_limit]")
sys.exit(1)
instance_file = sys.argv[1]
sol_file = sys.argv[2] if len(sys.argv) > 2 else None
str_time_limit = sys.argv[3] if len(sys.argv) > 3 else "20"
main(instance_file, str_time_limit, sol_file)
- Compilation / Execution (Windows)
-
cl /EHsc location_routing_problem.cpp -I%HX_HOME%\include /link %HX_HOME%\bin\hexaly130.liblocation_routing_problem instances\coordChrist100.dat
- Compilation / Execution (Linux)
-
g++ location_routing_problem.cpp -I/opt/hexaly_13_0/include -lhexaly130 -lpthread -o location_routing_problem./location_routing_problem instances/coordChrist100.dat
#include "optimizer/hexalyoptimizer.h"
#include <cmath>
#include <cstring>
#include <fstream>
#include <iostream>
#include <numeric>
#include <vector>
using namespace hexaly;
using namespace std;
class LocationRoutingProblem {
public:
// Hexaly Optimizer
HexalyOptimizer optimizer;
// Number of customers
int nbCustomers;
// Customers coordinates
vector<int> xCustomers;
vector<int> yCustomers;
// Customers demands
vector<double> demandsData;
// Number of depots
int nbDepots;
// Depots coordinates
vector<double> xDepots;
vector<double> yDepots;
// Capacity of depots
vector<double> depotsCapacity;
// Cost of opening a depot
vector<double> openingDepotsCost;
// Number of trucks
int nbTrucks;
// Capacity of trucks
int truckCapacity;
// Cost of opening a route
int openingRouteCost;
// Is the route used ?
vector<HxExpression> sequenceUsed;
// What is the depot of the route ?
vector<HxExpression> associatedDepot;
// Distance matrixes
vector<vector<double>> distMatrixData;
vector<vector<double>> distDepotsData;
int areCostDouble;
// Decision variables
vector<HxExpression> customersSequences;
vector<HxExpression> depots;
// Sum of all the costs
HxExpression totalCost;
void readInstance(const char* fileName) { readInputLrp(fileName); }
void solve(const char* limit) {
// Declare the optimization model
HxModel m = optimizer.getModel();
int minNbTrucks = ceil(accumulate(demandsData.begin(), demandsData.end(), 0) / truckCapacity);
nbTrucks = ceil(1.5 * minNbTrucks);
// A sequence is represented as a list containing the customers in the order they are visited
customersSequences.resize(nbTrucks);
for (int i = 0; i < nbTrucks; ++i) {
customersSequences[i] = m.listVar(nbCustomers);
}
// All customers should be assigned to a sequence
m.constraint(m.partition(customersSequences.begin(), customersSequences.end()));
// A depot is represented as a set containing the associated customersSequences
depots.resize(nbDepots);
for (int d = 0; d < nbDepots; ++d) {
depots[d] = m.setVar(nbTrucks);
}
// All the customersSequences should be assigned to a depot
m.constraint(m.partition(depots.begin(), depots.end()));
vector<HxExpression> distRoutes;
vector<HxExpression> routeCosts;
distRoutes.resize(nbTrucks);
sequenceUsed.resize(nbTrucks);
routeCosts.resize(nbTrucks);
associatedDepot.resize(nbTrucks);
// Create Hexaly arrays to be able to access them with "at" operators
HxExpression quantityServed = m.array();
HxExpression demands = m.array(demandsData.begin(), demandsData.end());
HxExpression distMatrix = m.array();
HxExpression distDepots = m.array();
for (int i = 0; i < nbCustomers; ++i) {
distMatrix.addOperand(m.array(distMatrixData[i].begin(), distMatrixData[i].end()));
distDepots.addOperand(m.array(distDepotsData[i].begin(), distDepotsData[i].end()));
}
for (int r = 0; r < nbTrucks; ++r) {
HxExpression sequence = customersSequences[r];
HxExpression c = m.count(sequence);
// A sequence is used if it serves at least one customer
sequenceUsed[r] = c > 0;
// The "find" function gets the depot assigned to the sequence
associatedDepot[r] = m.find(m.array(depots.begin(), depots.end()), r);
HxExpression demandLambda = m.lambdaFunction([&](HxExpression j) { return demands[j]; });
quantityServed.addOperand(m.sum(sequence, demandLambda));
// The quantity needed in each sequence must not exceed the vehicle capacity
m.constraint(quantityServed[r] <= truckCapacity);
HxExpression distLambda =
m.lambdaFunction([&](HxExpression i) { return m.at(distMatrix, sequence[i], sequence[i + 1]); });
distRoutes[r] = m.iif(sequenceUsed[r],
m.at(distDepots, sequence[0], associatedDepot[r]) +
m.at(distDepots, sequence[c - 1], associatedDepot[r]),
0) +
m.sum(m.range(0, c - 1), distLambda);
// The sequence cost is the sum of the opening cost and the sequence length
routeCosts[r] = sequenceUsed[r] * openingRouteCost + distRoutes[r];
}
vector<HxExpression> depotCost;
depotCost.resize(nbDepots);
for (int d = 0; d < nbDepots; ++d) {
// A depot is open if at least a sequence starts from there
depotCost[d] = openingDepotsCost[d] * (m.count(depots[d]) > 0);
HxExpression depotLambda = m.lambdaFunction([&](HxExpression r) { return quantityServed[r]; });
HxExpression depotQuantity = m.sum(depots[d], depotLambda);
// The total demand served by a depot must not exceed its capacity
m.constraint(depotQuantity <= depotsCapacity[d]);
}
HxExpression depotsCost = m.sum(depotCost.begin(), depotCost.end());
HxExpression routingCost = m.sum(routeCosts.begin(), routeCosts.end());
totalCost = routingCost + depotsCost;
m.minimize(totalCost);
m.close();
optimizer.getParam().setTimeLimit(atoi(limit));
optimizer.solve();
}
/* Write the solution in a file */
void writeSolution(const char* inFile, const string& solFile) {
ofstream file;
file.exceptions(ofstream::failbit | ofstream::badbit);
file.open(solFile.c_str());
file << "File name: " << inFile << "; total cost = " << totalCost.getDoubleValue() << endl;
for (int r = 0; r < nbTrucks; ++r) {
if (sequenceUsed[r].getValue()) {
file << "Sequence " << r << ", assigned to depot " << associatedDepot[r].getValue() << " : ";
HxCollection customersCollection = customersSequences[r].getCollectionValue();
for (hxint i = 0; i < customersCollection.count(); ++i) {
file << customersCollection[i] << " ";
}
file << endl;
}
}
}
private:
void readInputLrp(const char* fileName) {
string file = fileName;
ifstream infile(file.c_str());
if (!infile.is_open()) {
throw std::runtime_error("File cannot be opened.");
}
infile >> nbCustomers;
xCustomers.resize(nbCustomers);
yCustomers.resize(nbCustomers);
demandsData.resize(nbCustomers);
distMatrixData.resize(nbCustomers);
distDepotsData.resize(nbCustomers);
infile >> nbDepots;
xDepots.resize(nbDepots);
yDepots.resize(nbDepots);
depotsCapacity.resize(nbDepots);
openingDepotsCost.resize(nbDepots);
for (int i = 0; i < nbDepots; ++i) {
infile >> xDepots[i];
infile >> yDepots[i];
}
for (int i = 0; i < nbCustomers; ++i) {
infile >> xCustomers[i];
infile >> yCustomers[i];
}
infile >> truckCapacity;
for (int i = 0; i < nbDepots; ++i) {
infile >> depotsCapacity[i];
}
for (int i = 0; i < nbCustomers; ++i) {
infile >> demandsData[i];
}
vector<double> tempOpeningCostDepots;
tempOpeningCostDepots.resize(nbDepots);
for (int i = 0; i < nbDepots; ++i) {
infile >> tempOpeningCostDepots[i];
}
int tempOpeningCostRoute;
infile >> tempOpeningCostRoute;
infile >> areCostDouble;
infile.close();
if (areCostDouble == 1) {
openingRouteCost = tempOpeningCostRoute;
for (int i = 0; i < nbDepots; ++i) {
openingDepotsCost[i] = tempOpeningCostDepots[i];
}
} else {
openingRouteCost = round(tempOpeningCostRoute);
for (int i = 0; i < nbDepots; ++i) {
openingDepotsCost[i] = round(tempOpeningCostDepots[i]);
}
}
computeDistanceMatrix();
}
void computeDistanceMatrix() {
for (int i = 0; i < nbCustomers; ++i) {
distMatrixData[i].resize(nbCustomers);
distDepotsData[i].resize(nbDepots);
for (int j = 0; j < nbCustomers; ++j) {
distMatrixData[i][j] =
computeDist(xCustomers[i], yCustomers[i], xCustomers[j], yCustomers[j], areCostDouble);
}
for (int d = 0; d < nbDepots; ++d) {
distDepotsData[i][d] = computeDist(xCustomers[i], yCustomers[i], xDepots[d], yDepots[d], areCostDouble);
}
}
}
double computeDist(int xi, int yi, int xj, int yj, int areCostDouble) {
double dist = sqrt(pow(xi - xj, 2) + pow(yi - yj, 2));
if (areCostDouble == 0) {
dist = ceil(dist * 100);
}
return dist;
}
};
int main(int argc, char** argv) {
if (argc < 2) {
cerr << "Usage: ./lrp inputFile [outputFile] [timeLimit]" << endl;
return 1;
}
const char* instanceFile = argv[1];
const char* solFile = argc > 2 ? argv[2] : NULL;
const char* strTimeLimit = argc > 3 ? argv[3] : "20";
try {
LocationRoutingProblem model;
model.readInstance(instanceFile);
model.solve(strTimeLimit);
if (solFile != NULL)
model.writeSolution(instanceFile, solFile);
} catch (const std::exception& e) {
std::cerr << "An error occured: " << e.what() << endl;
}
return 0;
}
- Compilation / Execution (Windows)
-
copy %HX_HOME%\bin\Hexaly.NET.dll .csc LocationRoutingProblem.cs /reference:Hexaly.NET.dllLocationRoutingProblem instances\coordChrist100.dat
using System;
using System.IO;
using System.Collections.Generic;
using Hexaly.Optimizer;
public class LocationRoutingProblem : IDisposable
{
// Hexaly Optimizer
HexalyOptimizer optimizer;
// Number of customers
int nbCustomers;
// Customers coordinates
int[] xCustomers;
int[] yCustomers;
// Customers demands
int[] demandsData;
// Number of depots
int nbDepots;
// Depots coordinates
int[] xDepots;
int[] yDepots;
// Capacity of depots
int[] depotsCapacity;
double[] openingDepotsCost;
// Number of trucks
int nbTrucks;
// Capacity of a truck
int truckCapacity;
// Cost of opening a route
int openingRouteCost;
// Is the route used ?
HxExpression[] sequenceUsed;
// What is the depot of the route ?
HxExpression[] associatedDepot;
// Distance matrixes
double[][] distMatrixData;
double[][] distDepotsData;
int areCostDouble;
// Decision variables
HxExpression[] customersSequences;
HxExpression[] depots;
// Sum of all the costs
HxExpression totalCost;
public LocationRoutingProblem()
{
optimizer = new HexalyOptimizer();
}
/* Read instance data */
void ReadInstance(string fileName)
{
using (StreamReader input = new StreamReader(fileName))
{
string[] line;
line = ReadNextLine(input);
nbCustomers = int.Parse(line[0]);
xCustomers = new int[nbCustomers];
yCustomers = new int[nbCustomers];
demandsData = new int[nbCustomers];
distMatrixData = new double[nbCustomers][];
line = ReadNextLine(input);
nbDepots = int.Parse(line[0]);
xDepots = new int[nbDepots];
yDepots = new int[nbDepots];
depotsCapacity = new int[nbDepots];
openingDepotsCost = new double[nbDepots];
distDepotsData = new double[nbCustomers][];
line = ReadNextLine(input);
for (int i = 0; i < nbDepots; ++i)
{
line = ReadNextLine(input);
xDepots[i] = int.Parse(line[0]);
yDepots[i] = int.Parse(line[1]);
}
line = ReadNextLine(input);
for (int i = 0; i < nbCustomers; ++i)
{
line = ReadNextLine(input);
xCustomers[i] = int.Parse(line[0]);
yCustomers[i] = int.Parse(line[1]);
}
line = ReadNextLine(input);
line = ReadNextLine(input);
truckCapacity = int.Parse(line[0]);
line = ReadNextLine(input);
for (int i = 0; i < nbDepots; ++i)
{
line = ReadNextLine(input);
depotsCapacity[i] = int.Parse(line[0]);
}
line = ReadNextLine(input);
for (int i = 0; i < nbCustomers; ++i)
{
line = ReadNextLine(input);
demandsData[i] = int.Parse(line[0]);
}
line = ReadNextLine(input);
double[] tempOpeningCostDepots = new double[nbDepots];
for (int i = 0; i < nbDepots; ++i)
{
line = ReadNextLine(input);
tempOpeningCostDepots[i] = double.Parse(
line[0],
System.Globalization.CultureInfo.InvariantCulture
);
}
line = ReadNextLine(input);
line = ReadNextLine(input);
double tempOpeningCostRoute = double.Parse(line[0]);
line = ReadNextLine(input);
line = ReadNextLine(input);
areCostDouble = int.Parse(line[0]);
if (areCostDouble == 1)
{
openingRouteCost = (int)tempOpeningCostRoute;
for (int i = 0; i < nbDepots; ++i)
openingDepotsCost[i] = tempOpeningCostDepots[i];
}
else
{
openingRouteCost = (int)Math.Round(tempOpeningCostRoute);
for (int i = 0; i < nbDepots; ++i)
openingDepotsCost[i] = Math.Round(tempOpeningCostDepots[i]);
}
DistanceMatrixes();
}
}
void DistanceMatrixes()
{
for (int i = 0; i < nbCustomers; ++i)
{
distMatrixData[i] = new double[nbCustomers];
for (int j = 0; j < nbCustomers; ++j)
{
distMatrixData[i][j] = ComputeDistance(
xCustomers[i],
yCustomers[i],
xCustomers[j],
yCustomers[j]
);
}
distDepotsData[i] = new double[nbDepots];
for (int d = 0; d < nbDepots; ++d)
{
distDepotsData[i][d] = ComputeDistance(
xCustomers[i],
yCustomers[i],
xDepots[d],
yDepots[d]
);
}
}
}
double ComputeDistance(int xi, int yi, int xj, int yj)
{
double dist = Math.Sqrt(Math.Pow(xi - xj, 2) + Math.Pow(yi - yj, 2));
if (areCostDouble == 0)
dist = Math.Ceiling(dist * 100);
return dist;
}
public void Dispose()
{
if (optimizer != null)
optimizer.Dispose();
}
void Solve(int limit)
{
// Declare the optimization model
HxModel m = optimizer.GetModel();
int totalDemand = 0;
foreach (int dem in demandsData)
totalDemand += dem;
int minNbTrucks = (int)Math.Ceiling((double)totalDemand / truckCapacity);
nbTrucks = (int)Math.Ceiling(1.5 * minNbTrucks);
customersSequences = new HxExpression[nbTrucks];
depots = new HxExpression[nbDepots];
// A route is represented as a list containing the customers in the order they are visited
for (int r = 0; r < nbTrucks; ++r)
customersSequences[r] = m.List(nbCustomers);
// All customers should be assigned to a route
m.Constraint(m.Partition(customersSequences));
// A depot is represented as a set containing the associated sequences
for (int d = 0; d < nbDepots; ++d)
depots[d] = m.Set(nbTrucks);
// All the sequences should be assigned to a depot
m.Constraint(m.Partition(depots));
// Create HexalyOptimizer arrays to be able to access them with "at" operators
HxExpression demands = m.Array(demandsData);
HxExpression distMatrix = m.Array(distMatrixData);
HxExpression distDepots = m.Array(distDepotsData);
sequenceUsed = new HxExpression[nbTrucks];
HxExpression[] routeCosts = new HxExpression[nbTrucks];
HxExpression[] distRoutes = new HxExpression[nbTrucks];
associatedDepot = new HxExpression[nbTrucks];
HxExpression quantityServed = m.Array();
for (int r = 0; r < nbTrucks; ++r)
{
HxExpression sequence = customersSequences[r];
HxExpression c = m.Count(sequence);
// A sequence is used if it serves at least one customer
sequenceUsed[r] = m.Gt(c, 0);
// The "find" function gets the depot that is assigned to the sequence
associatedDepot[r] = m.Find(m.Array(depots), r);
HxExpression demandLambda = m.LambdaFunction(j => demands[j]);
quantityServed.AddOperand(m.Sum(sequence, demandLambda));
// The quantity needed in each sequence must not exceed the vehicle capacity
m.Constraint(quantityServed[r] <= truckCapacity);
HxExpression distLambda = m.LambdaFunction(
i => m.At(distMatrix, m.At(sequence, i), m.At(sequence, i + 1))
);
distRoutes[r] =
m.Sum(m.Range(0, c - 1), distLambda)
+ m.If(
sequenceUsed[r],
m.At(distDepots, m.At(sequence, 0), associatedDepot[r])
+ m.At(distDepots, m.At(sequence, c - 1), associatedDepot[r]),
0
);
// The sequence cost is the sum of the opening cost and the sequence length
routeCosts[r] = distRoutes[r] + openingRouteCost * sequenceUsed[r];
}
HxExpression[] depotCost = new HxExpression[nbDepots];
for (int d = 0; d < nbDepots; ++d)
{
// A depot is open if at least a sequence starts from there
depotCost[d] = openingDepotsCost[d] * (m.Count(depots[d]) > 0);
HxExpression depotLambda = m.LambdaFunction(r => m.At(quantityServed, r));
HxExpression depotQuantity = m.Sum(depots[d], depotLambda);
// The total demand served by a depot must not exceed its capacity
m.Constraint(depotQuantity <= depotsCapacity[d]);
}
HxExpression depotsCost = m.Sum(depotCost);
HxExpression routingCost = m.Sum(routeCosts);
totalCost = routingCost + depotsCost;
m.Minimize(totalCost);
m.Close();
optimizer.GetParam().SetTimeLimit(limit);
optimizer.Solve();
}
/* Write the solution in a file */
void WriteSolution(string infile, string outfile)
{
using (StreamWriter output = new StreamWriter(outfile))
{
output.WriteLine(
"File name: " + infile + "; total cost = " + totalCost.GetDoubleValue()
);
for (int r = 0; r < nbTrucks; ++r)
{
if (sequenceUsed[r].GetValue() != 0)
{
output.Write(
"Route " + r + ", assigned to depot " + associatedDepot[r].GetValue() + ": "
);
HxCollection customersCollection = customersSequences[r].GetCollectionValue();
for (int i = 0; i < customersCollection.Count(); ++i)
output.Write(customersCollection[i] + " ");
output.WriteLine();
}
}
}
}
String[] ReadNextLine(StreamReader input)
{
return input.ReadLine().Split(new[] { ' ' }, StringSplitOptions.RemoveEmptyEntries);
}
public static void Main(string[] args)
{
if (args.Length < 1)
{
Console.WriteLine("Usage: LocationRoutingProblem inputFile [outputFile] [timeLimit]");
Environment.Exit(1);
}
string instanceFile = args[0];
string strOutput = args.Length > 1 ? args[1] : null;
string strTimeLimit = args.Length > 2 ? args[2] : "20";
using (LocationRoutingProblem model = new LocationRoutingProblem())
{
model.ReadInstance(instanceFile);
model.Solve(int.Parse(strTimeLimit));
if (strOutput != null)
model.WriteSolution(instanceFile, strOutput);
}
}
}
- Compilation / Execution (Windows)
-
javac LocationRoutingProblem.java -cp %HX_HOME%\bin\hexaly.jarjava -cp %HX_HOME%\bin\hexaly.jar;. LocationRoutingProblem instances\coordChrist100.dat
- Compilation / Execution (Linux)
-
javac LocationRoutingProblem.java -cp /opt/hexaly_13_0/bin/hexaly.jarjava -cp /opt/hexaly_13_0/bin/hexaly.jar:. LocationRoutingProblem instances/coordChrist100.dat
import com.hexaly.optimizer.*;
import java.io.*;
import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;
public class LocationRoutingProblem {
// Hexaly Optimizer
private final HexalyOptimizer optimizer;
// Number of customers
private int nbCustomers;
// Customers coordinates
private int[] xCustomers;
private int[] yCustomers;
// Customers demands
private int[] demandsData;
// Number of depots
private int nbDepots;
// Depots coordinates
private int[] xDepots;
private int[] yDepots;
// Capacity of depots
private int[] depotsCapacity;
// Cost of opening a depot
private double[] openingDepotsCost;
// Number of trucks
private int nbTrucks;
// Capacity of trucks
private int truckCapacity;
// Cost of opening a route
private int openingRouteCost;
// Is the sequence used ?
private HxExpression[] sequenceUsed;
// What is the depot of the sequence ?
private HxExpression[] associatedDepot;
// Distance matrixes
private double[][] distMatrixData;
private double[][] distDepotsData;
private int areCostDouble;
// Decision variables
private HxExpression[] customersSequences;
private HxExpression[] depots;
// Objective value
private HxExpression totalCost;
private LocationRoutingProblem(HexalyOptimizer optimizer) {
this.optimizer = optimizer;
}
private void solve(int limit) {
// Declare the optimization model
HxModel m = optimizer.getModel();
int totalDemand = 0;
for (int d : demandsData) {
totalDemand += d;
}
int minNbTrucks = (int) Math.ceil(totalDemand / truckCapacity);
int nbTrucks = (int) Math.ceil(1.5 * minNbTrucks);
customersSequences = new HxExpression[nbTrucks];
depots = new HxExpression[nbDepots];
// A route is represented as a list containing the customers in the order they are visited
for (int i = 0; i < nbTrucks; ++i) {
customersSequences[i] = m.listVar(nbCustomers);
}
// All customers should be assigned to a route
m.constraint(m.partition(customersSequences));
// A depot is represented as a set containing the associated customersSequences
for (int d = 0; d < nbDepots; ++d) {
depots[d] = m.setVar(nbTrucks);
}
// All the customersSequences should be assigned to a depot
m.constraint(m.partition(depots));
HxExpression demands = m.array(demandsData);
HxExpression distMatrix = m.array(distMatrixData);
HxExpression distDepots = m.array(distDepotsData);
sequenceUsed = new HxExpression[nbTrucks];
HxExpression[] routeCosts = new HxExpression[nbTrucks];
HxExpression[] distRoutes = new HxExpression[nbTrucks];
associatedDepot = new HxExpression[nbTrucks];
HxExpression quantityServed = m.array();
for (int r = 0; r < nbTrucks; ++r) {
HxExpression sequence = customersSequences[r];
HxExpression c = m.count(sequence);
// A sequence is used if it serves at least one customer
sequenceUsed[r] = m.gt(c, 0);
// The "find" function gets the depot that is assigned to the sequence
associatedDepot[r] = m.find(m.array(depots), r);
HxExpression demandLambda = m.lambdaFunction(j -> m.at(demands, j));
quantityServed.addOperand(m.sum(sequence, demandLambda));
// The quantity needed in each sequence must not exceed the vehicle capacity
m.constraint(m.leq(m.at(quantityServed, r), truckCapacity));
HxExpression distLambda = m
.lambdaFunction(i -> m.at(distMatrix, m.at(sequence, i), m.at(sequence, m.sum(i, 1))));
distRoutes[r] = m.sum(m.sum(m.range(0, m.sub(c, 1)), distLambda),
m.iif(sequenceUsed[r], m.sum(m.at(distDepots, m.at(sequence, 0), associatedDepot[r]),
m.at(distDepots, m.at(sequence, m.sub(c, 1)), associatedDepot[r])), 0));
// The sequence cost is the sum of the opening cost and the sequence length
routeCosts[r] = m.sum(distRoutes[r], m.prod(openingRouteCost, sequenceUsed[r]));
}
HxExpression[] depotCost = new HxExpression[nbDepots];
for (int d = 0; d < nbDepots; ++d) {
// A depot is open if at least a sequence starts from there
depotCost[d] = m.prod(openingDepotsCost[d], m.gt(m.count(depots[d]), 0));
HxExpression depotLambda = m.lambdaFunction(r -> m.at(quantityServed, r));
HxExpression depotQuantity = m.sum(depots[d], depotLambda);
// The total demand served by a depot must not exceed its capacity
m.constraint(m.leq(depotQuantity, depotsCapacity[d]));
}
HxExpression depotsCost = m.sum(depotCost);
HxExpression routingCost = m.sum(routeCosts);
totalCost = m.sum(routingCost, depotsCost);
m.minimize(totalCost);
m.close();
optimizer.getParam().setTimeLimit(limit);
optimizer.solve();
}
/* Write the solution in a file */
private void writeSolution(String infile, String outfile) throws IOException {
try (PrintWriter output = new PrintWriter(outfile)) {
output.println("File name: " + infile + "; total cost = " + totalCost.getDoubleValue());
for (int r = 0; r < nbTrucks; ++r) {
if (sequenceUsed[r].getIntValue() != 0) {
output.print("Route " + r + ", assigned to depot " + associatedDepot[r].getIntValue() + " : ");
HxCollection customersCollection = customersSequences[r].getCollectionValue();
for (int i = 0; i < customersCollection.count(); ++i) {
output.print(customersCollection.get(i) + " ");
}
output.println();
}
}
} catch (FileNotFoundException e) {
System.out.println("An error occurred.");
e.printStackTrace();
}
}
private void readInstanceLrp(String fileName) throws IOException {
try (Scanner infile = new Scanner(new File(fileName))) {
nbCustomers = infile.nextInt();
xCustomers = new int[nbCustomers];
yCustomers = new int[nbCustomers];
demandsData = new int[nbCustomers];
distMatrixData = new double[nbCustomers][];
distDepotsData = new double[nbCustomers][];
nbDepots = infile.nextInt();
xDepots = new int[nbDepots];
yDepots = new int[nbDepots];
depotsCapacity = new int[nbDepots];
openingDepotsCost = new double[nbDepots];
for (int i = 0; i < nbDepots; ++i) {
xDepots[i] = infile.nextInt();
yDepots[i] = infile.nextInt();
}
for (int i = 0; i < nbCustomers; ++i) {
xCustomers[i] = infile.nextInt();
yCustomers[i] = infile.nextInt();
}
truckCapacity = infile.nextInt();
for (int i = 0; i < nbDepots; ++i) {
depotsCapacity[i] = infile.nextInt();
}
for (int i = 0; i < nbCustomers; ++i) {
demandsData[i] = infile.nextInt();
}
double[] tempOpeningCostDepots = new double[nbDepots];
for (int i = 0; i < nbDepots; ++i) {
if (infile.hasNext()) {
tempOpeningCostDepots[i] = Double.parseDouble(infile.next());
} else if (infile.hasNextInt()) {
tempOpeningCostDepots[i] = infile.nextInt();
}
}
int tempOpeningCostRoute = infile.nextInt();
areCostDouble = infile.nextInt();
if (areCostDouble == 1) {
openingRouteCost = tempOpeningCostRoute;
for (int i = 0; i < tempOpeningCostDepots.length; ++i) {
openingDepotsCost[i] = tempOpeningCostDepots[i];
}
} else {
openingRouteCost = Math.round(tempOpeningCostRoute);
for (int i = 0; i < tempOpeningCostDepots.length; ++i) {
openingDepotsCost[i] = Math.round(tempOpeningCostDepots[i]);
}
}
computeDistanceMatrix();
} catch (FileNotFoundException e) {
System.out.println("An error occurred.");
e.printStackTrace();
}
}
void computeDistanceMatrix() {
for (int i = 0; i < nbCustomers; ++i) {
distMatrixData[i] = new double[nbCustomers];
for (int j = 0; j < nbCustomers; ++j) {
distMatrixData[i][j] = computeDist(xCustomers[i], xCustomers[j], yCustomers[i], yCustomers[j],
areCostDouble);
}
distDepotsData[i] = new double[nbDepots];
for (int d = 0; d < nbDepots; ++d) {
distDepotsData[i][d] = computeDist(xCustomers[i], xDepots[d], yCustomers[i], yDepots[d], areCostDouble);
}
}
}
private double computeDist(int xi, int xj, int yi, int yj, int areCostDouble) {
double dist = Math.sqrt(Math.pow(xi - xj, 2) + Math.pow(yi - yj, 2));
if (areCostDouble == 0) {
dist = Math.ceil(100 * dist);
}
return dist;
}
public static void main(String[] args) {
if (args.length < 1) {
System.err.println("Usage: java LocationRoutingProblem inputFile [outputFile] [timeLimit]");
System.exit(1);
}
try (HexalyOptimizer optimizer = new HexalyOptimizer()) {
String instanceFile = args[0];
String strOutfile = args.length > 1 ? args[1] : null;
String strTimeLimit = args.length > 2 ? args[2] : "20";
LocationRoutingProblem model = new LocationRoutingProblem(optimizer);
model.readInstanceLrp(instanceFile);
model.solve(Integer.parseInt(strTimeLimit));
if (strOutfile != null)
model.writeSolution(instanceFile, strOutfile);
} catch (Exception ex) {
System.err.println(ex);
ex.printStackTrace();
System.exit(1);
}
}
}