Clustered Vehicle Routing (cluVRP)

Problem

In the Clustered Vehicle Routing Problem (cluVRP), a fleet of delivery vehicles with uniform capacity must service clusters of customers with known demand for a single commodity. Clusters, which are known in advance, are composed of customers close to one another. All customers must be visited exactly once. The vehicles start and end their routes at a common depot and the total demand served by each vehicle must not exceed its capacity. Customers in the same cluster must be serviced together. In other words, when a vehicle visits a customer in a cluster, it must visit all the other customers in this cluster before leaving it. The objective is to minimize the total traveled distance.

Principles learned

  • Add list decision variables to model the sequence of clusters visited by each truck and the order of customers within each cluster
  • Add a ‘partition‘ constraint to ensure all clusters are visited
  • Define lambda functions to compute the traveled distance

Data

The instances we provide come from the Exact Algorithms for the Clustered Vehicle Routing Problem research paper. They follow the TSPLib format, as follows:

  • The number of nodes follows the keyword DIMENSION (there is one warehouse so the number of customers is the number of nodes minus 1).
  • The truck capacity follows the keyword CAPACITY.
  • The number of trucks follows the keyword VEHICLES.
  • The number of clusters follows the keyword GVRP_CAPACITY.
  • After the keyword NODE_COORD_SECTION: for each node, its ID and its x and y coordinates.
  • After the keyword GVRP_SET_SECTION: for each cluster, its ID and the nodes that are part of it (ending with value -1).
  • After the keyword DEMAND_SECTION: for each cluster, its ID and its total demand (sum of the customer’s demands in this cluster).

Program

The Hexaly model for the Clustered Vehicle Routing Problem (cluVRP) uses list decision variables. For each truck, we define a list variable representing the sequence of clusters it visits (‘truckSequences’). Using a ‘partition‘ constraint on all these lists, we ensure that each cluster is served by exactly one truck. We then use a second family of list decision variables to model the order in which the trucks visit the customers within each cluster (‘clustersSequences’). To ensure we visit all customers, we constrain the size of these lists to be equal to the number of customers in the cluster.

The total quantity delivered by each truck is computed with a lambda function to apply the ‘sum’ operator over all visited clusters. Note that the number of terms in this sum varies during the search, along with the size of the list. We constrain this quantity to be lower than the truck capacity.

We then compute the distance traveled within each cluster. Using another lambda function, we sum up the distances from one customer to the next along the route. We also keep track of the first and last nodes visited in each cluster (‘initialNodes’ and ‘endNodes’ respectively).

We can then compute the distance traveled by each truck, by summing:

  • The distance traveled within each visited cluster
  • The sum of distances from the last customer of a cluster to the first customer of the next cluster
  • The distance from the depot to the first customer in the first cluster
  • The distance from the last customer in the last cluster back to the depot.

Finally, we can minimize the total traveled distance.

Execution
hexaly clustered-vehicle-routing.hxm inFileName=instances/A-n32-k5-C11-V2.gvrp [hxTimeLimit=] [solFileName=]
use io;

/* read instance data.*/
function input(){
    local usage = "Usage: hexaly clustered-vehicle-routing.hxm "
        + "inFileName=inputFile [hxTimeLimit=timeLimit]";

    if (inFileName == nil) throw usage;

    readInputCluvrp();
    computeDistanceMatrix();
    computeDistanceCustomerDepot();
}

/* Declare the optimization model */
function model() {
    // Sequences of clusters visited by each truck
    truckSequences[k in 0...nbTrucks] <- list(nbClusters);
    
    // A list is created for each cluster, to determine the order within the cluster
    for[k in 0...nbClusters] {
        clustersSequences[k] <- list(clusters[k].count());
        // All customers in the cluster must be visited 
        constraint count(clustersSequences[k]) == clusters[k].count();
    }
    
    // All clusters must be visited by the trucks
    constraint partition[k in 0...nbTrucks](truckSequences[k]);


    for[k in 0...nbClusters] {
        local sequence <- clustersSequences[k];
        local c <- count(sequence);

        // Distance traveled within cluster k
        clustersDistances[k] <- sum(1...c, i=> 
                distanceMatrix[clusters[k][sequence[i-1]]][clusters[k][sequence[i]]]
        );

        // first and last point visited when travelling into cluster k
        initialNodes[k] <- clusters[k][sequence[0]];
        endNodes[k] <- clusters[k][sequence[c-1]];
    }

    for [k in 0...nbTrucks] {
        local sequence <- truckSequences[k];
        local c <- count(sequence);

        // The quantity needed in each route (sum of quantity of each cluster) must not
        // exceed the truck capacity
        routeQuantity <- sum(sequence, j => demands[j]);
        constraint routeQuantity <= truckCapacity;

        // Distance traveled by truck k
        // = distance in each cluster + distance between cluster + distance with depot at 
        // the beginning end at the end of a route
        routeDistances[k] <- sum(1...c, i => clustersDistances[sequence[i]] 
                + distanceMatrix[endNodes[sequence[i - 1]]][initialNodes[sequence[i]]] ) 
                + (c > 0 ? clustersDistances[sequence[0]] 
                + distanceDepot[initialNodes[sequence[0]]] 
                + distanceDepot[endNodes[sequence[c-1]]] : 0) ;

            
    }
    // Objective:  minimize the distance traveled
    totalDistance <- sum[k in 0...nbTrucks](routeDistances[k]);
    minimize totalDistance;
}

/* Parametrize the solver */
function param() { 
    if (hxTimeLimit == nil) hxTimeLimit = 20;
}


/* Write the solution in a file with the following format:
 * - total distance
 * - for each truck the customers visited (omitting the start/end at the depot) */
function output() {
    if (solFileName == nil) return;
    local outfile = io.openWrite(solFileName);

    outfile.println(totalDistance.value);
    for [k in 0...nbTrucks] {
        for [cluster in truckSequences[k].value]{
            for [customer in clustersSequences[cluster].value]
                outfile.print(clusters[cluster][customer] + 2, " ");
        }
        outfile.println();
    }
    outfile.close();
}


function readInputCluvrp() {
    local inFile = io.openRead(inFileName);
    local nbNodes = 0;
    while (true) {
        local str = inFile.readString();
        if (str.startsWith("DIMENSION")) {
            if (!str.endsWith(":")) str = inFile.readString();
            nbNodes = inFile.readInt();
            nbCustomers = nbNodes - 1;
        } else if ((str.startsWith("VEHICLES"))) {
            if (!str.endsWith(":")) str = inFile.readString();
            nbTrucks = inFile.readInt();
        } else if ((str.startsWith("GVRP_SETS"))) {
            if (!str.endsWith(":")) str = inFile.readString();
            nbClusters = inFile.readInt();
        } else if ((str.startsWith("CAPACITY"))) {
            if (!str.endsWith(":")) str = inFile.readString();
            truckCapacity = inFile.readInt();
        } else if (str.startsWith("NODE_COORD_SECTION")) {
            break;
        } else {
            local dump = inFile.readln();
        }
    }
    for [n in 1..nbNodes] {
        if (n != inFile.readInt()) throw "Unexpected index";
        if(n==1){
            depotX =  round(inFile.readDouble());
            depotY =  round(inFile.readDouble());
        }else{
            // -2 because original customer indices are in 2..nbNodes
            customersX[n - 2] = round(inFile.readDouble());
            customersY[n - 2] = round(inFile.readDouble());
        }
    }

    dump = inFile.readln();
    if (!dump.startsWith("GVRP_SET_SECTION")) throw "Expected keyword GVRP_SET_SECTION";
    for [n in 1..nbClusters] {
        if (n != inFile.readInt()) throw "Unexpected index";
        value = inFile.readInt();
        i = 0;
        while(value != -1){
            // -2 because original customer indices are in 2..nbNodes
            clusters[n-1][i] = value - 2;
            value = inFile.readInt();
            i += 1;
        } 
    }

    dump = inFile.readln();
    if (!dump.startsWith("DEMAND_SECTION")) throw "Expected keyword DEMAND_SECTION";
    for [n in 1..nbClusters] {
        if (n != inFile.readInt()) throw "Unexpected index";
        demands[n-1] = inFile.readInt();
    }
}


/* Compute the distance matrix */
function computeDistanceMatrix() {
    for [i in 0...nbCustomers] {
        distanceMatrix[i][i] = 0;
        for [j in i+1...nbCustomers] {
            local localDistance = computeDist(i, j);
            distanceMatrix[j][i] = localDistance;
            distanceMatrix[i][j] = localDistance;
        }
    }
}

/* Compute the distance between customers and depot */
function computeDistanceCustomerDepot() {
    for [i in 0...nbCustomers] {
        distanceDepot[i] =  round(sqrt(pow((depotX - customersX[i]), 2)
                + pow((depotY - customersY[i]), 2)));
    }
}

function computeDist(i, j) {
    local exactDist = sqrt(pow((customersX[i] - customersX[j]), 2)
            + pow((customersY[i] - customersY[j]), 2));
    return round(exactDist);
}
Execution (Windows)
set PYTHONPATH=%HX_HOME%\bin\python
clustered-vehicle-routing.py instances\A-n32-k5-C11-V2.gvrp
Execution (Linux)
export PYTHONPATH=/opt/hexaly_13_0/bin/python
python clustered-vehicle-routing.py instances/A-n32-k5-C11-V2.gvrp
import hexaly.optimizer
import sys
import math

def read_elem(filename):
    with open(filename) as f:
        return [str(elem) for elem in f.read().split()]
    

def main(instance_file, str_time_limit, output_file):
    # Read instance data
    nb_customers, nb_trucks, nb_clusters, truck_capacity, dist_matrix_data, dist_depot_data, \
        demands_data, clusters_data = read_input_cvrp(instance_file)


    with hexaly.optimizer.HexalyOptimizer() as optimizer:
        # Declare the optimization model
        model = optimizer.model

        # Create Hexaly arrays to be able to access them with an "at" operator
        demands = model.array(demands_data)
        dist_matrix = model.array(dist_matrix_data)
        clusters = model.array(clusters_data)
        dist_depot = model.array(dist_depot_data)
        
        # A list is created for each cluster, to determine the order within the cluster
        clusters_sequences = []
        for k in range(nb_clusters):
            clusters_sequences.append(model.list(len(clusters_data[k])))
            # All customers in the cluster must be visited 
            model.constraint(model.count(clusters_sequences[k]) == len(clusters_data[k]))

        clustersDistances = model.array()
        initialNodes = model.array()
        endNodes = model.array()
        for k in range(nb_clusters):
            sequence = clusters_sequences[k]
            c = model.count(sequence)
            # Distance traveled within cluster k
            clustersDistances_lambda = model.lambda_function(lambda i:
                    model.at(dist_matrix, clusters[k][sequence[i - 1]],
                    clusters[k][sequence[i]]))
            clustersDistances.add_operand(model.sum(model.range(1,c), 
                    clustersDistances_lambda))
            
            # First and last point when visiting cluster k
            initialNodes.add_operand(clusters[k][sequence[0]]) 
            endNodes.add_operand(clusters[k][sequence[c - 1]])
        
        # Sequences of clusters visited by each truck
        truckSequences = [model.list(nb_clusters) for _ in range(nb_trucks)]

        # Each cluster must be visited by exactly one truck
        model.constraint(model.partition(truckSequences))

        routeDistances = [None] * nb_trucks
        for k in range(nb_trucks):
            sequence = truckSequences[k]
            c = model.count(sequence)

            # The quantity needed in each route must not exceed the truck capacity
            demand_lambda = model.lambda_function(lambda j: demands[j])
            route_quantity = model.sum(sequence, demand_lambda)
            model.constraint(route_quantity <= truck_capacity)

            # Distance traveled by each truck
            # = distance in each cluster + distance between clusters + distance with depot at 
            # the beginning end at the end of a route
            routeDistances_lambda = model.lambda_function(lambda i:
                    model.at(clustersDistances, sequence[i]) + model.at(dist_matrix,
                    endNodes[sequence[i - 1]], initialNodes[sequence[i]]))
            routeDistances[k] = model.sum(model.range(1, c), routeDistances_lambda) \
                    + model.iif(c > 0, model.at(clustersDistances, sequence[0]) 
                    + dist_depot[initialNodes[sequence[0]]]
                    + dist_depot[endNodes[sequence[c - 1]]], 0)

        # Total distance traveled
        total_distance = model.sum(routeDistances)

        # Objective:  minimize the distance traveled
        model.minimize(total_distance)

        model.close()

        # Parameterize the optimizer
        optimizer.param.time_limit = int(str_time_limit)

        optimizer.solve() 
        # Write the solution in a file with the following format:
        # - total distance
        # - for each truck the customers visited (omitting the start/end at the depot)
        if output_file is not None:
            with open(output_file, 'w') as f:
                f.write("%d\n" % (total_distance.value))
                for k in range(nb_trucks):
                    # Values in sequence are in [0..nbCustomers - 1]. +2 is to put it back
                    # in [2..nbCustomers+1] as in the data files (1 being the depot)
                    for cluster in truckSequences[k].value:
                        for customer in clusters_sequences[cluster].value:
                            f.write("%d " % (clusters_data[cluster][customer] + 2))
                    f.write("\n")

# The input files follow the "Augerat" format
def read_input_cvrp(filename):
    file_it = iter(read_elem(filename))

    nb_nodes = 0
    while True:
        token = next(file_it)
        if token == "DIMENSION:":
            nb_nodes = int(next(file_it))
            nb_customers = nb_nodes - 1
        if token == "VEHICLES:":
            nb_trucks = int(next(file_it))
        elif token == "GVRP_SETS:":
            nb_clusters = int(next(file_it))
        elif token == "CAPACITY:":
            truck_capacity = int(next(file_it))
        elif token == "NODE_COORD_SECTION":
            break

    customers_x = [None] * nb_customers
    customers_y = [None] * nb_customers
    depot_x = 0
    depot_y = 0
    for n in range(nb_nodes):
        node_id = int(next(file_it))
        if node_id != n + 1:
            print("Unexpected index")
            sys.exit(1)
        if node_id == 1:
            depot_x = int(float(next(file_it)))
            depot_y = int(float(next(file_it)))
        else:
            # -2 because original customer indices are in 2..nbNodes
            customers_x[node_id - 2] = int(float(next(file_it)))
            customers_y[node_id - 2] = int(float(next(file_it)))

    distance_matrix = compute_distance_matrix(customers_x, customers_y)
    distance_depots = compute_distance_depots(depot_x, depot_y, customers_x, customers_y)
    
    token = next(file_it)
    if token != "GVRP_SET_SECTION":
        print("Expected token GVRP_SET_SECTION")
        sys.exit(1)
    clusters_data = [None]*nb_clusters
    for n in range(nb_clusters):
        node_id = int(next(file_it))
        if node_id != n + 1:
            print("Unexpected index")
            sys.exit(1)
        cluster = []
        value = int(next(file_it))
        while value != -1:
            # -2 because original customer indices are in 2..nbNodes
            cluster.append(value-2)
            value = int(next(file_it))
        clusters_data[n] = cluster
    token = next(file_it)
    if token != "DEMAND_SECTION":
        print("Expected token DEMAND_SECTION")
        sys.exit(1)

    demands = [None] * nb_clusters
    for n in range(nb_clusters):
        node_id = int(next(file_it))
        if node_id != n + 1:
            print("Unexpected index")
            sys.exit(1)
        demands[n] = int(next(file_it))
    return nb_customers, nb_trucks, nb_clusters, truck_capacity, distance_matrix, \
        distance_depots, demands, clusters_data

# Compute the distance matrix
def compute_distance_matrix(customers_x, customers_y):
    nb_customers = len(customers_x)
    distance_matrix = [[None for i in range(nb_customers)] for j in range(nb_customers)]
    for i in range(nb_customers):
        distance_matrix[i][i] = 0
        for j in range(nb_customers):
            dist = compute_dist(customers_x[i], customers_x[j], customers_y[i], customers_y[j])
            distance_matrix[i][j] = dist
            distance_matrix[j][i] = dist
    return distance_matrix

# Compute the distances to depot
def compute_distance_depots(depot_x, depot_y, customers_x, customers_y):
    nb_customers = len(customers_x)
    distance_depots = [None] * nb_customers
    for i in range(nb_customers):
        dist = compute_dist(depot_x, customers_x[i], depot_y, customers_y[i])
        distance_depots[i] = dist
    return distance_depots


def compute_dist(xi, xj, yi, yj):
    exact_dist = math.sqrt(math.pow(xi - xj, 2) + math.pow(yi - yj, 2))
    return int(math.floor(exact_dist + 0.5))


if __name__ == '__main__':
    if len(sys.argv) < 2:
        print("Usage: python clustered-vehicle-routing.py input_file [output_file] [time_limit]")
        sys.exit(1)

    instance_file = sys.argv[1]
    output_file = sys.argv[2] if len(sys.argv) > 2 else None
    str_time_limit = sys.argv[3] if len(sys.argv) > 3 else "20"

    main(instance_file, str_time_limit, output_file)



Compilation / Execution (Windows)
cl /EHsc clustered-vehicle-routing.cpp -I%HX_HOME%\include /link %HX_HOME%\bin\hexaly130.lib
clustered-vehicle-routing instances\A-n32-k5-C11-V2.gvrp
Compilation / Execution (Linux)
g++ clustered-vehicle-routing.cpp -I/opt/hexaly_13_0/include -lhexaly130 -lpthread -o clustered-vehicle-routing
./clustered-vehicle-routing instances/A-n32-k5-C11-V2.gvrp
#include "optimizer/hexalyoptimizer.h"
#include <cmath>
#include <cstring>
#include <fstream>
#include <iostream>
#include <vector>

using namespace hexaly;
using namespace std;

class ClusteredCvrp {
public:
    // Hexaly Optimizer
    HexalyOptimizer optimizer;

    // Number of customers
    int nbCustomers;

    // Capacity of the trucks
    int truckCapacity;

    // Demand on each cluster
    vector<int> demandsData;

    // Customers in each cluster;
    vector<vector<int>> clustersData;

    // Distance matrix between customers
    vector<vector<int>> distMatrixData;

    // Distances between customers and depot
    vector<int> distDepotData;

    // Number of trucks
    int nbTrucks;

    // Number of clusters
    int nbClusters;

    // Decision variables
    vector<HxExpression> truckSequences;
    vector<HxExpression> clustersSequences;

    // Are the trucks actually used
    vector<HxExpression> trucksUsed;

    // Number of trucks used in the solution
    HxExpression nbTrucksUsed;

    // Distance traveled by all the trucks
    HxExpression totalDistance;

    /* Read instance data */
    void readInstance(const string& fileName) {
        readInputCvrp(fileName);
    }

    void solve(int limit) {
        // Declare the optimization model
        HxModel model = optimizer.getModel();

        // Create HexalyOptimizer arrays to be able to access them with an "at" operator
        HxExpression demands = model.array(demandsData.begin(), demandsData.end());
        HxExpression distMatrix = model.array();
        for (int n = 0; n < nbCustomers; ++n) {
            distMatrix.addOperand(model.array(distMatrixData[n].begin(), 
                    distMatrixData[n].end()));
        }
        HxExpression clusters = model.array();
        for (int n = 0; n < clustersData.size(); ++n) {
            clusters.addOperand(model.array(clustersData[n].begin(), clustersData[n].end()));
        }
        HxExpression distDepot = model.array(distDepotData.begin(), distDepotData.end());
        
        // A list is created for each cluster, to determine the order within the cluster
        clustersSequences.resize(nbClusters);
        for (int k = 0; k < nbClusters; ++k) {
            int c = (int) clustersData[k].size();
            clustersSequences[k] = model.listVar(c);
            // All customers in the cluster must be visited 
            model.constraint(model.count(clustersSequences[k]) == c);
        }

        HxExpression clustersDistances =  model.array();
        HxExpression initialNodes = model.array();
        HxExpression endNodes = model.array();
        for (int k = 0; k < nbClusters; ++k) {
            HxExpression sequence = clustersSequences[k];
            HxExpression c = model.count(sequence);

            // Distance traveled within clsuter k
            HxExpression clustersDistances_lambda = model.createLambdaFunction(
                    [&](HxExpression i) { return model.at(distMatrix,
                    clusters[k][sequence[i - 1]], clusters[k][sequence[i]]); });
            clustersDistances.addOperand(model.sum(model.range(1, c), clustersDistances_lambda));

            // First and last point when visiting cluster k
            initialNodes.addOperand(clusters[k][sequence[0]]);
            endNodes.addOperand(clusters[k][sequence[c - 1]]);
        }

        // Sequence of clusters visited by each truck
        truckSequences.resize(nbTrucks);
        for (int k = 0; k < nbTrucks; ++k) {
            truckSequences[k] = model.listVar(nbClusters);
        }
        // All clusters must be visited by the trucks
        model.constraint(model.partition(truckSequences.begin(), truckSequences.end()));
        
        vector<HxExpression> routeDistances(nbTrucks);
        for (int k = 0; k < nbTrucks; ++k) {
            HxExpression sequence = truckSequences[k];
            HxExpression c = model.count(sequence);

            // The quantity needed in each route must not exceed the truck capacity
            HxExpression demandLambda =
                    model.createLambdaFunction([&](HxExpression j) { return demands[j]; });
            HxExpression routeQuantity = model.sum(sequence, demandLambda);
            model.constraint(routeQuantity <= truckCapacity);

            // Distance traveled by truck k
            // = distance in each cluster + distance between clusters + distance with depot 
            // at the beginning end at the end of a route
            HxExpression routeDistances_lambda = model.createLambdaFunction(
                    [&](HxExpression i) { return model.at(clustersDistances, sequence[i]) 
                    + model.at(distMatrix, endNodes[sequence[i - 1]], initialNodes[sequence[i]]);}
            );
            
            routeDistances[k] = model.sum(model.range(1, c), routeDistances_lambda)
                    + model.iif(c > 0, model.at(clustersDistances, sequence[0]) 
                    + distDepot[initialNodes[sequence[0]]] 
                    + distDepot[endNodes[sequence[c - 1]]], 0);
        }

        // Total distance traveled
        totalDistance = model.sum(routeDistances.begin(), routeDistances.end());

        // Objective: minimize the distance traveled
        model.minimize(totalDistance);

        model.close();

        // Parametrize the optimizer
        optimizer.getParam().setTimeLimit(limit);
        
        optimizer.solve();
    }

    /* Write the solution in a file with the following format:
     * - total distance
     * - for each truck the customers visited (omitting the start/end at the depot) */
    void writeSolution(const string& fileName) {
        ofstream outfile;
        outfile.exceptions(ofstream::failbit | ofstream::badbit);
        outfile.open(fileName.c_str());

        outfile << totalDistance.getValue() << endl;
        for (int k = 0; k < nbTrucks; ++k) {
            // Values in sequence are in [0..nbCustomers-1]. +2 is to put it back in 
            // [2..nbCustomers+1] as in the data files (1 being the depot)
            HxCollection customersCollection = truckSequences[k].getCollectionValue();
            for (int i = 0; i < customersCollection.count(); ++i) {
                int cluster = customersCollection[i];
                HxCollection clustersCollection = 
                        clustersSequences[cluster].getCollectionValue();
                for (int j = 0; j < clustersCollection.count(); ++j)
                    outfile << clustersData[cluster][clustersCollection[j]] + 2 << " ";
            }
            outfile << endl;
        }
    }

private:
    // The input files follow the "Augerat" format
    void readInputCvrp(const string& fileName) {
        ifstream infile(fileName.c_str());
        if (!infile.is_open()) {
            throw std::runtime_error("File cannot be opened.");
        }
        string str;
        char* pch;
        char* line;
        int nbNodes;
        while (true) {
            getline(infile, str);
            line = strdup(str.c_str());
            pch = strtok(line, " ");
            if (strcmp(pch, "DIMENSION:") == 0) {
                pch = strtok(NULL, " ");
                nbNodes = atoi(pch);
                nbCustomers = nbNodes - 1;
            } else if (strcmp(pch, "VEHICLES:") == 0) {
                pch = strtok(NULL, " ");
                nbTrucks = atoi(pch);
            } else if (strcmp(pch, "GVRP_SETS:") == 0) {
                pch = strtok(NULL, " ");
                nbClusters = atoi(pch);
            } else if (strcmp(pch, "CAPACITY:") == 0) {
                pch = strtok(NULL, "");
                truckCapacity = atoi(pch);
            } else if (strcmp(pch, "NODE_COORD_SECTION") == 0) {
                break;
            }
        }

        vector<int> customersX(nbCustomers);
        vector<int> customersY(nbCustomers);
        int depotX, depotY;
        for (int n = 1; n <= nbNodes; ++n) {
            int id;
            infile >> id;
            if (id != n) {
                throw std::runtime_error("Unexpected index");
            }
            if (n == 1) {
                infile >> depotX;
                infile >> pch;
                infile >> depotY;
                infile >> pch;
            } else {
                // -2 because original customer indices are in 2..nbNodes
                infile >> customersX[n - 2];
                infile >> pch;
                infile >> customersY[n - 2];
                infile >> pch;
            }
        }

        computeDistanceMatrix(depotX, depotY, customersX, customersY);

        getline(infile, str); // End the last line
        getline(infile, str);
        line = strdup(str.c_str());
        pch = strtok(line, " ");
        if (strcmp(pch, "GVRP_SET_SECTION") != 0) {
            throw std::runtime_error("Expected keyword GVRP_SET_SECTION");
        }
        for (int n = 1; n <= nbClusters; ++n) {
            vector<int> cluster;
            int id;
            infile >> id;
            if (id != n) {
                throw std::runtime_error("Unexpected index");
            }
            int data;
            infile >> data;
            while (data != -1) {
                // -2 because original customer indices are in 2..nbNodes
                cluster.push_back(data - 2);
                infile >> data;
            }
            clustersData.push_back(cluster);

        };

        getline(infile, str); // End the last line
        getline(infile, str);
        line = strdup(str.c_str());
        pch = strtok(line, " ");
        if (strcmp(pch, "DEMAND_SECTION") != 0) {
            throw std::runtime_error("Expected keyword DEMAND_SECTION");
        }
        demandsData.resize(nbClusters);
        for (int n = 1; n <= nbClusters; ++n) {
            int id;
            infile >> id;
            if (id != n) {
                throw std::runtime_error("Unexpected index");
            }
            int demand;
            infile >> demand;
            demandsData[n - 1] = demand;
        }
        infile.close();

    }

    // Compute the distance matrix
    void computeDistanceMatrix(int depotX, int depotY, const vector<int>& customersX, const vector<int>& customersY) {
        distMatrixData.resize(nbCustomers);
        for (int i = 0; i < nbCustomers; ++i) {
            distMatrixData[i].resize(nbCustomers);
        }
        for (int i = 0; i < nbCustomers; ++i) {
            distMatrixData[i][i] = 0;
            for (int j = i + 1; j < nbCustomers; ++j) {
                int distance = computeDist(customersX[i], customersX[j], customersY[i], customersY[j]);
                distMatrixData[i][j] = distance;
                distMatrixData[j][i] = distance;
            }
        }

        distDepotData.resize(nbCustomers);
        for (int i = 0; i < nbCustomers; ++i) {
            distDepotData[i] = computeDist(depotX, customersX[i], depotY, customersY[i]);
        }
    }

    int computeDist(int xi, int xj, int yi, int yj) {
        double exactDist = sqrt(pow((double)xi - xj, 2) + pow((double)yi - yj, 2));
        return floor(exactDist + 0.5);
    }

};

int main(int argc, char** argv) {
    if (argc < 1) {
        cerr << "Usage: clustered-vehicle-routing inputFile [outputFile] [timeLimit] " << endl;
        return 1;
    }
    const char* instanceFile = argc > 1 ? argv[1] : "instances/A-n32-k5-C11-V2.gvrp";
    const char* solFile = argc > 2 ? argv[2] : NULL;
    const char* strTimeLimit = argc > 3 ? argv[3] : "5";
    try {
        ClusteredCvrp model;
        model.readInstance(instanceFile);
        model.solve(atoi(strTimeLimit));
        if (solFile != NULL)
            model.writeSolution(solFile);
        return 0;
    } catch (const exception& e) {
        cerr << "An error occurred: " << e.what() << endl;
        return 1;
    }
}
Compilation / Execution (Windows)
copy %HX_HOME%\bin\Hexaly.NET.dll .
csc clustered-vehicle-routing.cs /reference:Hexaly.NET.dll
clustered-vehicle-routing instances\A-n32-k5-C11-V2.gvrp
using System;
using System.IO;
using System.Collections.Generic;
using Hexaly.Optimizer;

public class cluCvrp : IDisposable
{
    // Hexaly Optimizer
    HexalyOptimizer optimizer;

    // Number of customers
    int nbCustomers;

    // Capacity of the trucks
    int truckCapacity;

    // Demand on each customer
    long[] demandsData;

    // Customers in each cluster 
    long[][] clustersData;

    // Distance matrix between customers
    long[][] distMatrixData;

    // Distances between customers and depot
    long[] distDepotData;

    // Number of trucks
    int nbTrucks;

    // Number of Clusters
    int nbClusters;

    // Decision variables
    HxExpression[] truckSequences;
    HxExpression[] clustersSequences;


    // Distance traveled by all the trucks
    HxExpression totalDistance;

    public cluCvrp()
    {
        optimizer = new HexalyOptimizer();
    }

    /* Read instance data */
    void ReadInstance(string fileName)
    {
        ReadInputcluCvrp(fileName);
    }

    public void Dispose()
    {
        if (optimizer != null)
            optimizer.Dispose();
    }

    void Solve(int limit)
    {
        // Declare the optimization model
        HxModel model = optimizer.GetModel();

        HxExpression[] clustersDistances = new HxExpression[nbClusters];
        HxExpression[] routeDistances = new HxExpression[nbTrucks];
        HxExpression[] initialNodes = new HxExpression[nbClusters];
        HxExpression[] endNodes = new HxExpression[nbClusters];

        clustersSequences = new HxExpression[nbClusters];
        // A list is created for each cluster, to determine the order within the cluster
        for ( int k = 0; k < nbClusters; ++k)
        {
            int c = (int) clustersData[k].Length;
            clustersSequences[k] = model.List(c);
            // All customers in the cluster must be visited 
            model.Constraint(model.Count(clustersSequences[k]) == c);
        }

        // Create HexalyOptimizer arrays to be able to access them with an "at" operator
        HxExpression demands = model.Array(demandsData);
        HxExpression distDepot = model.Array(distDepotData);
        HxExpression distMatrix = model.Array(distMatrixData);
        HxExpression clusters = model.Array(clustersData);
        
        for (int k = 0; k < nbClusters; ++k)
        {
            HxExpression sequence = clustersSequences[k];
            HxExpression c = model.Count(sequence);

            HxExpression routeDistances_lambda = model.LambdaFunction(
                i => model.At(distMatrix,
                     clusters[k][sequence[i - 1]], clusters[k][sequence[i]]) );
            
            // Distance traveled within cluster k
            clustersDistances[k] = model.Sum(model.Range(1,c), routeDistances_lambda);

            // first and last point visited when traveled into cluster k
            initialNodes[k] = clusters[k][sequence[0]];
            endNodes[k] = clusters[k][sequence[c - 1]];
        }

        truckSequences = new HxExpression[nbTrucks];
        // Sequence of clusters visited by each truck
        for (int k = 0; k < nbTrucks; ++k)
            truckSequences[k] = model.List(nbClusters);

        // All customers must be visited by the trucks
        model.Constraint(model.Partition(truckSequences));

        HxExpression valueDistClusters = model.Array(clustersDistances);
        HxExpression initials = model.Array(initialNodes);
        HxExpression ends = model.Array(endNodes);
        for (int k = 0; k < nbTrucks; ++k)
        {
            HxExpression sequence = truckSequences[k];
            HxExpression c = model.Count(sequence);

            // The quantity needed in each route must not exceed the truck capacity
            HxExpression demandLambda = model.LambdaFunction(j => demands[j]);
            HxExpression routeQuantity = model.Sum(sequence, demandLambda);
            model.Constraint(routeQuantity <= truckCapacity);

            // Distance traveled by truck k
            // = distance in each cluster + distance between clusters + distance with depot 
            // at the beginning end at the end of a route
            HxExpression routeDistances_lambda = model.LambdaFunction(
                    i => model.Sum( model.At(valueDistClusters, sequence[i]),
                    model.At(distMatrix, ends[sequence[i - 1]], initials[sequence[i]])));
            routeDistances[k] = model.Sum(model.Range(1, c), routeDistances_lambda)
                    + model.If(c > 0, valueDistClusters[ model.At(sequence,0)]
                    + distDepot[initials[sequence[0]]] + distDepot[ends[sequence[c - 1]]], 0);
        }

        totalDistance = model.Sum(routeDistances);

        // Objective:  minimize the distance traveled
        model.Minimize(totalDistance);

        model.Close();

        // Parametrize the optimizer
        optimizer.GetParam().SetTimeLimit(limit);

        optimizer.Solve();
    }

    /* Write the solution in a file with the following format:
     * -  total distance
     * - for each truck the customers visited (omitting the start/end at the depot) */
    void WriteSolution(string fileName)
    {
        using (StreamWriter output = new StreamWriter(fileName))
        {
            output.WriteLine(totalDistance.GetValue());
            for (int k = 0; k < nbTrucks; ++k)
            {
                // Values in sequence are in [0..nbCustomers-1]. +2 is to put it back in 
                // [2..nbCustomers+1] as in the data files (1 being the depot)
                HxCollection customersCollection = truckSequences[k].GetCollectionValue();
                for (int i = 0; i < customersCollection.Count(); ++i)
                {
                    long cluster = customersCollection[i];
                    HxCollection clustersCollection = 
                        clustersSequences[cluster].GetCollectionValue();
                    for (int j = 0; j < clustersCollection.Count(); ++j)
                        output.Write((clustersData[cluster][clustersCollection[j]] + 2) + " ");
                }
                output.WriteLine();
            }
        }
    }

    public static void Main(string[] args)
    {
        if (args.Length < 1)
        {
            Console.WriteLine("Usage: clustered-vehicle-routing.cs inputFile [solFile] [timeLimit]");
            Environment.Exit(1);
        }
        string instanceFile = args[0];
        string outputFile = args.Length > 1 ? args[1] : null;
        string strTimeLimit = args.Length > 2 ? args[2] : "5";
        string strNbTrucks = args.Length > 3 ? args[3] : "0";

        using (cluCvrp model = new cluCvrp())
        {
            model.ReadInstance(instanceFile);
            model.Solve(int.Parse(strTimeLimit));
            if (outputFile != null)
                model.WriteSolution(outputFile);
        }
    }

    // The input files follow the "Augerat" format
    private void ReadInputcluCvrp(string fileName)
    {
        using (StreamReader input = new StreamReader(fileName))
        {   
            int nbNodes = 0;
            string[] splitted;
            while (true) 
            {
                splitted = input.ReadLine().Split(':');
                if (splitted[0].Contains("DIMENSION"))
                {
                    nbNodes = int.Parse(splitted[1]);
                    nbCustomers = nbNodes - 1;
                }
                else if (splitted[0].Contains("VEHICLES"))
                    nbTrucks = int.Parse(splitted[1]);
                else if (splitted[0].Contains("GVRP_SETS"))
                    nbClusters = int.Parse(splitted[1]);
                else if (splitted[0].Contains("CAPACITY"))
                    truckCapacity = int.Parse(splitted[1]);
                else if (splitted[0].Contains("NODE_COORD_SECTION"))
                    break;
            }
            int[] customersX = new int[nbCustomers];
            int[] customersY = new int[nbCustomers];
            int depotX = 0,
                depotY = 0;
            char[] delimiterChars = { ' ', '.' };
            for (int n = 1; n <= nbNodes; ++n)
            {
                splitted = input.ReadLine().Split(delimiterChars);
                int id = int.Parse(splitted[0]);
                if ( id != n)
                    throw new Exception("Unexpected index");
                if (n == 1)
                {
                    depotX = int.Parse(splitted[1]);
                    depotY = int.Parse(splitted[3]);
                } 
                else
                {
                    // -2 because original customer indices are in 2..nbNodes
                    customersX[n - 2] = int.Parse(splitted[1]);
                    customersY[n - 2] = int.Parse(splitted[3]);
                }
            }

            ComputeDistanceMatrix(depotX, depotY, customersX, customersY);

            splitted = input.ReadLine().Split(' ');
            if (!splitted[0].Contains("GVRP_SET_SECTION"))
                throw new Exception("Expected keyword GVRP_SET_SECTION");

            clustersData = new long[nbClusters][];
            for (int n = 1; n <= nbClusters; ++n)
            {
                splitted = input
                    .ReadLine()
                    .Split((char[])null, StringSplitOptions.RemoveEmptyEntries);
                if (int.Parse(splitted[0]) != n)
                    throw new Exception("Unexpected index");
                List<long> cluster = new List<long>();
                int i = 1;
                var customer = int.Parse(splitted[1]);
                while (customer != -1)
                {
                    // -2 because original customer indices are in 2..nbNodes
                    cluster.Add(customer - 2);
                    i++;
                    customer = int.Parse(splitted[i]);
                }
                clustersData[n - 1] = cluster.ToArray();
            }    
            
            splitted = input.ReadLine().Split(' ');
            if (!splitted[1].Contains("DEMAND_SECTION"))
                throw new Exception("Expected keyword DEMAND_SECTION");

            demandsData = new long[nbCustomers];
            for (int n = 1; n <= nbClusters; ++n)
            {
                splitted = input
                    .ReadLine()
                    .Split((char[])null, StringSplitOptions.RemoveEmptyEntries);
                if (int.Parse(splitted[0]) != n)
                    throw new Exception("Unexpected index");
                var demand = int.Parse(splitted[1]);
                demandsData[n - 1] = demand;
            }

        }
    }

    // Compute the distance matrix
    private void ComputeDistanceMatrix(int depotX, int depotY, int[] customersX, int[] customersY)
    {
        distMatrixData = new long[nbCustomers][];
        for (int i = 0; i < nbCustomers; ++i)
            distMatrixData[i] = new long[nbCustomers];

        for (int i = 0; i < nbCustomers; ++i)
        {
            distMatrixData[i][i] = 0;
            for (int j = i + 1; j < nbCustomers; ++j)
            {
                long dist = ComputeDist(customersX[i], customersX[j], customersY[i], 
                    customersY[j]);
                distMatrixData[i][j] = dist;
                distMatrixData[j][i] = dist;
            }
        }

        distDepotData = new long[nbCustomers];
        for (int i = 0; i < nbCustomers; ++i)
            distDepotData[i] = ComputeDist(depotX, customersX[i], depotY, customersY[i]);
    }

    private long ComputeDist(int xi, int xj, int yi, int yj)
    {
        double exactDist = Math.Sqrt(Math.Pow(xi - xj, 2) + Math.Pow(yi - yj, 2));
        return Convert.ToInt64(Math.Round(exactDist));
    }
}
Compilation / Execution (Windows)
javac clustered_vehicle_routing.java -cp %HX_HOME%\bin\hexaly.jar
java -cp %HX_HOME%\bin\hexaly.jar;. clustered_vehicle_routing instances\A-n32-k5-C11-V2.gvrp
Compilation / Execution (Linux)
javac clustered_vehicle_routing.java -cp /opt/hexaly_13_0/bin/hexaly.jar
java -cp /opt/hexaly_13_0/bin/hexaly.jar:. clustered_vehicle_routing instances/A-n32-k5-C11-V2.gvrp
import java.util.*;
import java.io.*;
import com.hexaly.optimizer.*;

public class clustered_vehicle_routing {
    // Hexaly Optimizer
    private final HexalyOptimizer optimizer;

    // Number of customers
    int nbCustomers;

    // Capacity of the trucks
    private int truckCapacity;

    // Demand on each customer
    private long[] demandsData;

    // Customers in each cluster 
    private long[][] clustersData;

    // Distance matrix between customers
    private long[][] distMatrixData;

    // Distances between customers and depot
    private long[] distDepotData;

    // Number of trucks
    private int nbTrucks;

    // Number of clusters
    private int nbClusters;

    // Decision variables
    private HxExpression[] truckSequences;
    private HxExpression[] clustersSequences;

    // Distance traveled by all the trucks
    private HxExpression totalDistance;

    private clustered_vehicle_routing(HexalyOptimizer optimizer) {
        this.optimizer = optimizer;
    }

    private void solve(int limit) {
        // Declare the optimization model
        HxModel model = optimizer.getModel();

        // Create HexalyOptimizer arrays to be able to access them with an "at" operator
        HxExpression demands = model.array(demandsData);
        HxExpression distDepot = model.array(distDepotData);
        HxExpression distMatrix = model.array(distMatrixData);
        HxExpression[] distClusters = new HxExpression[nbClusters];
        HxExpression[] distRoutes = new HxExpression[nbTrucks];
        HxExpression[] initialNodes = new HxExpression[nbClusters];
        HxExpression[] endNodes = new HxExpression[nbClusters];

        clustersSequences  = new HxExpression[nbClusters];
        // A list is created for each cluster, to determine the order within the cluster
        for (int k = 0; k < nbClusters; ++k) {
            clustersSequences[k] = model.listVar(clustersData[k].length);
            // All customers in the cluster must be visited 
            model.constraint(model.eq(model.count(clustersSequences[k]), 
                clustersData[k].length));
        }

        for (int k = 0; k < nbClusters; ++k) {
            HxExpression sequence = clustersSequences[k];
            HxExpression sequenceCluster = model.array(clustersData[k]);
            HxExpression c = model.count(sequence);

            // Distance traveled within cluster k
            HxExpression distLambda = model
                .lambdaFunction(i -> model.at(distMatrix, 
                    model.at(sequenceCluster, model.at(sequence, model.sub(i, 1))), 
                    model.at(sequenceCluster, model.at(sequence, i) ))
                );
            distClusters[k] = model.sum(model.range(1,c), distLambda);

            // First and last point when visiting cluster k
            initialNodes[k] = model.at(sequenceCluster, model.at(sequence, 0));
            endNodes[k]     = model.at(sequenceCluster, model.at(sequence, model.sub(c,1)));
        }

        truckSequences = new HxExpression[nbTrucks];
        // Sequence of clusters visited by each truck.
        for (int k = 0; k < nbTrucks; ++k)
            truckSequences[k] = model.listVar(nbClusters);
        // Each cluster must be visited by exactly one truck
        model.constraint(model.partition(truckSequences));

        HxExpression valueDistCluster = model.array(distClusters);
        HxExpression initials         = model.array(initialNodes);
        HxExpression ends             = model.array(endNodes);
        
        for (int k = 0; k < nbTrucks; ++k) {
            HxExpression sequence = truckSequences[k];
            HxExpression c = model.count(sequence);

            // The quantity needed in each route must not exceed the truck capacity
            HxExpression demandLambda = model.lambdaFunction(j -> model.at(demands, j));
            HxExpression routeQuantity = model.sum(sequence, demandLambda);
            model.constraint(model.leq(routeQuantity, truckCapacity));

            // Distance traveled by truck k
            // = distance in each cluster + distance between clusters + distance with depot 
            // at the beginning end at the end of a route
            HxExpression distLambda = model.lambdaFunction(i -> model.sum(
                    model.at(valueDistCluster, model.at(sequence,i)),  
                    model.at(distMatrix, model.at(ends, model.at(sequence, model.sub(i, 1))), 
                    model.at(initials, model.at(sequence, i)))) );
            distRoutes[k] = model.sum(
                    model.sum(model.range(1, c), distLambda),
                    model.iif(model.gt(c, 0), model.sum( 
                    model.at(valueDistCluster, model.at(sequence,0)),
                    model.at(distDepot, model.at(initials, model.at(sequence, 0))),
                    model.at(distDepot, model.at(ends, model.at(sequence, model.sub(c, 1))))),
                    0) );
        }

        totalDistance = model.sum(distRoutes);

        // Objective: minimize the distance traveled
        model.minimize(totalDistance);

        model.close();

        // Parametrize the optimizer
        optimizer.getParam().setTimeLimit(limit);

        optimizer.solve();
    }

    /*
     * Write the solution in a file with the following format:
     * - number of trucks used and total distance
     * - for each truck the customers visited (omitting the start/end at the depot)
     */
    private void writeSolution(String fileName) throws IOException {
        try (PrintWriter output = new PrintWriter(fileName)) {
            output.println( totalDistance.getValue());
            for (int k = 0; k < nbTrucks; ++k) {

                // Values in sequence are in [0..nbCustomers-1]. +2 is to put it back in
                // [2..nbCustomers+1] as in the data files (1 being the depot)
                HxCollection customersCollection = truckSequences[k].getCollectionValue();
                for (int i = 0; i < customersCollection.count(); ++i) {
                    int cluster = (int) customersCollection.get(i);
                    HxCollection clustersCollection = 
                            clustersSequences[cluster].getCollectionValue();
                    for (int j = 0; j < clustersCollection.count(); ++j)
                        output.print((clustersData[cluster][(int) clustersCollection.get(j)] + 2)
                            + " ");
                }
                output.println();
            }
        }
    }

    // The input files follow the "Augerat" format
    private void readInstance(String fileName) throws IOException {
        try (Scanner input = new Scanner(new File(fileName))) {
            int nbNodes = 0;
            String[] splitted;
            while (true) {
                splitted = input.nextLine().split(":");
                if (splitted[0].contains("DIMENSION")) {
                    nbNodes = Integer.parseInt(splitted[1].trim());
                    nbCustomers = nbNodes - 1;
                } else if (splitted[0].contains("VEHICLES")) {
                    nbTrucks = Integer.parseInt(splitted[1].trim());
                } else if (splitted[0].contains("GVRP_SETS")) {
                    nbClusters = Integer.parseInt(splitted[1].trim());
                } else if (splitted[0].contains("CAPACITY")) {
                    truckCapacity = Integer.parseInt(splitted[1].trim());
                } else if (splitted[0].contains("NODE_COORD_SECTION")) {
                    break;
                }
            }
            int[] customersX = new int[nbCustomers];
            int[] customersY = new int[nbCustomers];
            int depotX = 0, depotY = 0;
            for (int n = 1; n <= nbNodes; ++n) {
                int id = input.nextInt();
                if (id != n)
                    throw new IOException("Unexpected index");
                if (n == 1) {
                    depotX = (int) input.nextFloat();
                    depotY = (int) input.nextFloat();
                } else {
                    // -2 because original customer indices are in 2..nbNodes
                    customersX[n - 2] = (int) input.nextFloat();
                    customersY[n - 2] = (int) input.nextFloat();
                }
            }
            computeDistanceMatrix(depotX, depotY, customersX, customersY);

            input.nextLine().split(""); // End the last line
            String name = input.nextLine();
            if (!name.contains("GVRP_SET_SECTION")) {
                throw new RuntimeException("Expected keyword GVRP_SET_SECTION");
            }
            clustersData = new long[nbClusters][];
            for (int n = 1; n <= nbClusters; ++n) {
                List<Long> cluster = new ArrayList<>();
                int id = input.nextInt();
                if (id != n)
                    throw new IOException("Unexpected index");
                long customer = input.nextInt();
                while (customer != -1) {
                    // -2 because original customer indices are in 2..nbNodes
                    cluster.add(customer - 2);
                    customer = input.nextInt();
                }
                long[] clusterArray = cluster.stream()
                        .mapToLong(Long::intValue).toArray();
                clustersData[n - 1] = clusterArray;
            }

            input.nextLine().split(""); 
            name = input.nextLine();
            if (!name.contains("DEMAND_SECTION")) {
                throw new RuntimeException("Expected keyword DEMAND_SECTION");
            }
            demandsData = new long[nbCustomers];
            for (int n = 1; n <= nbClusters; ++n) {
                int id = input.nextInt();
                if (id != n) throw new IOException("Unexpected index");
                int demand = input.nextInt();
                demandsData[n - 1] = demand;
            }
        }
    }

    // Compute the distance matrix
    private void computeDistanceMatrix(int depotX, int depotY, int[] customersX, int[] customersY) {
        distMatrixData = new long[nbCustomers][nbCustomers];
        for (int i = 0; i < nbCustomers; ++i) {
            distMatrixData[i][i] = 0;
            for (int j = i + 1; j < nbCustomers; ++j) {
                long dist = computeDist(customersX[i], customersX[j], customersY[i], customersY[j]);
                distMatrixData[i][j] = dist;
                distMatrixData[j][i] = dist;
            }
        }

        distDepotData = new long[nbCustomers];
        for (int i = 0; i < nbCustomers; ++i) {
            distDepotData[i] = computeDist(depotX, customersX[i], depotY, customersY[i]);
        }
    }

    private long computeDist(int xi, int xj, int yi, int yj) {
        double exactDist = Math.sqrt(Math.pow(xi - xj, 2) + Math.pow(yi - yj, 2));
        return Math.round(exactDist);
    }

    public static void main(String[] args) {
        if (args.length < 1) {
            System.err.println("Usage: java clustered-vehicle-routing inputFile [outputFile] [timeLimit]");
            System.exit(1);
        }
        try (HexalyOptimizer optimizer = new HexalyOptimizer()) {
            String instanceFile = args[0];
            String outputFile = args.length > 1 ? args[1] : null;
            String strTimeLimit = args.length > 2 ? args[2] : "20";

            clustered_vehicle_routing model = new clustered_vehicle_routing(optimizer);
            model.readInstance(instanceFile);
            model.solve(Integer.parseInt(strTimeLimit));
            if (outputFile != null) {
                model.writeSolution(outputFile);
            }
        } catch (Exception ex) {
            System.err.println(ex);
            ex.printStackTrace();
            System.exit(1);
        }
    }
}