Bin Packing Problem with Conflicts (BPPC)
Problem
In the Bin Packing Problem with Conflicts (BPPC), a number of items with known weights must be assigned to bins with uniform capacity. Each item must be placed inside exactly one bin, and the total weight of items inside each bin must not exceed its capacity. Furthermore, certain pairs of items conflict and, therefore, cannot be placed in the same bin. The objective is to minimize the number of bins used. This problem generalizes both the Bin Packing Problem (BPP) and the Vertex Coloring Problem (VCP) and is then NP-hard.
Principles learned
- Add set decision variables to model the contents of the bins
- Define a lambda function to compute the total weight of a bin
- Use the ‘intersection‘ operator to enforce the conflict constraints
Data
The instances provided are the Muritiba instances from the BPPLIB. The format of the data files is as follows:
- First line: number of items and capacity of a bin
- From the second line, for each item:
- item identifier
- item weight
- items in conflict with that item
Program
The Hexaly model for the Bin Packing Problem with Conflicts (BPPC) uses set decision variables. For each bin, we define a set variable representing the set of items assigned to this bin. We constrain the set variables to form a partition, ensuring that each item belongs to exactly one bin.
We compute the total weight of a bin using a variadic ‘sum’ operator on the set and a lambda function returning the weight associated with any item index. Note that the number of terms in this sum varies during the search, along with the size of the set. We can then constrain the total weight to be lower than the bin capacity.
We retrieve the index of the bin containing each item thanks to the ‘find‘ operator. Using the ‘intersection‘ operator, we can then enforce the conflict constraints. Indeed, for each item, we compute the intersection between the set variable representing its bin and the set of items with which it conflicts, and we constrain it to be empty.
A bin is actually used if it contains at least one item. Thanks to the ‘count’ operator, which returns the number of elements in a set, we can check whether each bin is actually used and then compute the total number of bins used.
The model computes simple lower and upper bounds on the optimal number of bins. It only defines nbMaxBins
set variables, and uses hxObjectiveThreshold
to stop the search when a solution with nbMinBins
bins has been reached.
- Execution
-
hexaly bin_packing_conflicts.hxm inFileName=instances/BPPC_1_6_8.txt [hxTimeLimit=] [solFileName=]
use io;
/* Read instance data */
function input() {
local usage = "Usage: hexaly bin_packing_conflict.hxm "
+ "inFileName=inputFile [solFileName=outputFile] [hxTimeLimit=timeLimit]";
if (inFileName == nil) throw usage;
local inFile = io.openRead(inFileName);
nbItems = inFile.readInt();
binCapacity = inFile.readInt();
for [i in 0...nbItems] {
line = inFile.readln();
local elements = line.trim().split();
itemWeights[i] = elements[1].toInt();
for [j in 2...elements.count()] {
forbiddenItems[i][j-2] = elements[j].toInt();
}
if (elements.count() == 2) {
forbiddenItems[i] = {};
}
}
nbMinBins = ceil(sum[i in 0...nbItems](itemWeights[i]) / binCapacity);
nbMaxBins = min(nbItems, 2 * nbMinBins);
}
/* Declare the optimization model */
function model() {
// Set decisions: bins[k] represents the items in bin k
bins[k in 0...nbMaxBins] <- set(nbItems);
// Find the bin where an item is packed
for [i in 0...nbItems] {
binForItem[i] <- find(bins, i);
}
// Each item must be in one bin and one bin only
constraint partition[k in 0...nbMaxBins](bins[k]);
// Forbidden constraints
for [i in 0...nbItems] {
itemsIntersection <- intersection(bins[binForItem[i]], forbiddenItems[i]);
constraint count(itemsIntersection) == 0;
}
for [k in 0...nbMaxBins] {
// Weight constraint for each bin
binWeights[k] <- sum(bins[k], i => itemWeights[i]);
constraint binWeights[k] <= binCapacity;
// Bin k is used if at least one item is in it
binsUsed[k] <- (count(bins[k]) > 0);
}
// Count the used bins
totalBinsUsed <- sum[k in 0...nbMaxBins](binsUsed[k]);
// Minimize the number of used bins
minimize totalBinsUsed;
}
/* Parametrize the solver */
function param() {
if (hxTimeLimit == nil) hxTimeLimit = 5;
// Stop the search if the lower threshold is reached
hxObjectiveThreshold = nbMinBins;
}
/* Write the solution in a file */
function output() {
if (solFileName == nil) return;
local solFile = io.openWrite(solFileName);
for [k in 0...nbMaxBins] {
if (bins[k].value.count() == 0) continue;
solFile.print("Bin weight: ", binWeights[k].value, " | Items: ");
for [e in bins[k].value]
solFile.print(e + " ");
solFile.println();
}
}
- Execution (Windows)
-
set PYTHONPATH=%HX_HOME%\bin\pythonpython bin_packing_conflicts.py instances\BPPC_1_6_8.txt
- Execution (Linux)
-
export PYTHONPATH=/opt/hexaly_13_0/bin/pythonpython bin_packing_conflicts.py instances/BPPC_1_6_8.txt
import hexaly.optimizer
import sys
import math
if len(sys.argv) < 2:
print("Usage: python bin_packing_conflicts.py inputFile [outputFile] [timeLimit]")
sys.exit(1)
def read_integers(filename):
with open(filename) as f:
return [int(elem) for elem in f.read().split()]
with hexaly.optimizer.HexalyOptimizer() as optimizer:
# Read instance data
filename = sys.argv[1]
count = 0
weights_data = []
forbidden_items = []
with open(filename) as f:
for line in f:
line = line.split()
if count == 0:
nb_items = int(line[0])
bin_capacity = int(line[1])
else:
weights_data.append(int(line[1]))
forbidden_items.append([])
for i in range(2, len(line)):
forbidden_items[count-1].append(int(line[i]))
count += 1
nb_min_bins = int(math.ceil(sum(weights_data) / float(bin_capacity)))
nb_max_bins = min(nb_items, 2 * nb_min_bins)
#
# Declare the optimization model
#
model = optimizer.model
# Set decisions: bins[k] represents the items in bin k
bins = [model.set(nb_items) for _ in range(nb_max_bins)]
# Transform bins and itemFordbidden list into hx expression
bins_array = model.array(bins)
forbidden_items_array = model.array(forbidden_items)
# Find the bin where an item is packed
bin_for_item = [model.find(bins_array, i) for i in range(nb_items)]
# Each item must be in one bin and one bin only
model.constraint(model.partition(bins))
# Create an array and a function to retrieve the item's weight
weights = model.array(weights_data)
weight_lambda = model.lambda_function(lambda i: weights[i])
# Forbidden constraint for each items
for i in range(nb_items):
items_intersection = model.intersection(forbidden_items_array[i], bins_array[bin_for_item[i]])
model.constraint(model.count(items_intersection) == 0)
# Weight constraint for each bin
bin_weights = [model.sum(b, weight_lambda) for b in bins]
for w in bin_weights:
model.constraint(w <= bin_capacity)
# Bin k is used if at least one item is in it
bins_used = [model.count(b) > 0 for b in bins]
# Count the used bins
total_bins_used = model.sum(bins_used)
# Minimize the number of used bins
model.minimize(total_bins_used)
model.close()
# Parameterize the optimizer
if len(sys.argv) >= 4:
optimizer.param.time_limit = int(sys.argv[3])
else:
optimizer.param.time_limit = 5
# Stop the search if the lower threshold is reached
optimizer.param.set_objective_threshold(0, nb_min_bins)
optimizer.solve()
# Write the solution in a file
if len(sys.argv) >= 3:
with open(sys.argv[2], 'w') as f:
for k in range(nb_items):
f.write("item:%d Weight:%d" % (k, weights_data[k]))
f.write("\n")
for k in range(nb_max_bins):
if bins_used[k].value:
f.write("Bin weight: %d | Items: " % bin_weights[k].value)
for e in bins[k].value:
f.write("%d " % e)
f.write("\n")
- Compilation / Execution (Windows)
-
cl /EHsc bin_packing_conflicts.cpp -I%HX_HOME%\include /link %HX_HOME%\bin\hexaly130.libbin_packing_conflicts instances\BPPC_1_6_8.txt
- Compilation / Execution (Linux)
-
g++ bin_packing_conflicts.cpp -I/opt/hexaly_13_0/include -lhexaly130 -lpthread -o bin_packing_conflicts./bin_packing_conflicts instances/BPPC_1_6_8.txt
#include "optimizer/hexalyoptimizer.h"
#include <cmath>
#include <fstream>
#include <iostream>
#include <numeric>
#include <vector>
using namespace hexaly;
using namespace std;
class BinPackingConflicts {
private:
// Number of items
int nbItems;
// Capacity of each bin
int binCapacity;
// Maximum number of bins
int nbMaxBins;
// Minimum number of bins
int nbMinBins;
// Weight of each item
std::vector<hxint> weightsData;
// List of forbidden items
std::vector<std::vector<int>> forbiddenItems;
// Hexaly Optimizer
HexalyOptimizer optimizer;
// Decision variables
std::vector<HxExpression> bins;
// Bin where the item is
std::vector<HxExpression> binForItem;
// Weight of each bin in the solution
std::vector<HxExpression> binWeights;
// Whether the bin is used in the solution
std::vector<HxExpression> binsUsed;
// Objective
HxExpression totalBinsUsed;
public:
/* Read instance data */
void readInstance(const string& fileName) {
int count = 0;
ifstream infile(fileName);
infile >> nbItems;
infile >> binCapacity;
weightsData.resize(nbItems);
infile.ignore(numeric_limits<streamsize>::max(), '\n');
string line;
while (getline(infile, line)) {
istringstream ss(line);
std::vector<string> lineParts;
string part;
while (ss >> part) {
lineParts.push_back(part);
}
weightsData[count] = stoi(lineParts[1]);
forbiddenItems.push_back(std::vector<int>());
for (size_t i = 2; i < lineParts.size(); ++i) {
forbiddenItems[count].push_back(stoi(lineParts[i]));
}
++count;
}
infile.close();
nbMinBins = ceil(accumulate(weightsData.begin(), weightsData.end(), 0.0) / binCapacity);
nbMaxBins = min(2 * nbMinBins, nbItems);
}
void solve(int limit) {
// Declare the optimization model
HxModel model = optimizer.getModel();
bins.resize(nbMaxBins);
binWeights.resize(nbMaxBins);
binsUsed.resize(nbMaxBins);
HxExpression binsArray = model.array();
HxExpression forbiddenItemsArray = model.array();
// Set decisions: bins[k] represents the items in bin k
for (int k = 0; k < nbMaxBins; ++k) {
bins[k] = model.setVar(nbItems);
binsArray.addOperand(bins[k]);
}
for (int i = 0; i < nbItems; ++i) {
forbiddenItemsArray.addOperand(model.array(forbiddenItems[i].begin(), forbiddenItems[i].end()));
}
// Find the bin where an item is packed
binForItem.resize(nbItems);
for (int i = 0; i < nbItems; ++i) {
binForItem[i] = model.find(binsArray, i);
}
// Each item must be in one bin and one bin only
model.constraint(model.partition(bins.begin(), bins.end()));
// Create an array and a function to retrieve the item's weight
HxExpression weights = model.array(weightsData.begin(), weightsData.end());
HxExpression weightLambda = model.createLambdaFunction([&](HxExpression i) { return weights[i]; });
for (int k = 0; k < nbMaxBins; ++k) {
// Weight constraint for each bin
binWeights[k] = model.sum(bins[k], weightLambda);
model.constraint(binWeights[k] <= binCapacity);
// Bin k is used if at least one item is in it
binsUsed[k] = model.count(bins[k]) > 0;
}
// Forbidden constraint for each items
for (int i = 0; i < nbItems; ++i) {
HxExpression itemsIntersection = model.intersection(binsArray[binForItem[i]], forbiddenItemsArray[i]);
model.constraint(model.count(itemsIntersection) == 0);
}
// Count the used bins
totalBinsUsed = model.sum(binsUsed.begin(), binsUsed.end());
// Minimize the number of used bins
model.minimize(totalBinsUsed);
model.close();
// Parametrize the optimizer
optimizer.getParam().setTimeLimit(limit);
// Stop the search if the lower threshold is reached
optimizer.getParam().setObjectiveThreshold(0, (hxint)nbMinBins);
optimizer.solve();
}
/* Write the solution in a file */
void writeSolution(const string& fileName) {
ofstream outfile;
outfile.exceptions(ofstream::failbit | ofstream::badbit);
outfile.open(fileName.c_str());
for (int k = 0; k < nbMaxBins; ++k) {
if (binsUsed[k].getValue()) {
outfile << "Bin weight: " << binWeights[k].getValue() << " | Items: ";
HxCollection binCollection = bins[k].getCollectionValue();
for (int i = 0; i < binCollection.count(); ++i) {
outfile << binCollection[i] << " ";
}
outfile << endl;
}
}
}
};
int main(int argc, char** argv) {
if (argc < 2) {
cerr << "Usage: bin_packing inputFile [outputFile] [timeLimit]" << endl;
return 1;
}
const char* instanceFile = argv[1];
const char* solFile = argc > 2 ? argv[2] : NULL;
const char* strTimeLimit = argc > 3 ? argv[3] : "5";
try {
BinPackingConflicts model;
model.readInstance(instanceFile);
model.solve(atoi(strTimeLimit));
if (solFile != NULL)
model.writeSolution(solFile);
return 0;
} catch (const exception& e) {
cerr << "An error occurred: " << e.what() << endl;
return 1;
}
}
- Compilation / Execution (Windows)
-
copy %HX_HOME%\bin\Hexaly.NET.dll .csc BinPackingConflicts.cs /reference:Hexaly.NET.dllBinPackingConflicts instances\BPPC_1_6_8.txt
using System;
using System.IO;
using System.Linq;
using System.Collections.Generic;
using Hexaly.Optimizer;
public class BinPackingConflicts : IDisposable
{
// Number of items
int nbItems;
// Capacity of each bin
int binCapacity;
// Maximum number of bins
int nbMaxBins;
// Minimum number of bins
int nbMinBins;
// Weight of each item
long[] weightsData;
// List of forbidden items
private List<List<int>> forbiddenItems;
// Hexaly Optimizer
HexalyOptimizer optimizer;
// Decision variables
HxExpression[] bins;
// Bin where the item is
private HxExpression[] binForItem;
// Weight of each bin in the solution
HxExpression[] binWeights;
// Whether the bin is used in the solution
HxExpression[] binsUsed;
// Objective
HxExpression totalBinsUsed;
public BinPackingConflicts()
{
optimizer = new HexalyOptimizer();
}
/* Read instance data */
void ReadInstance(string fileName)
{
int count = 0;
using (StreamReader input = new StreamReader(fileName))
{
forbiddenItems = new List<List<int>>();
string firstLine = input.ReadLine();
string[] firstLineParts = firstLine.Split(' ');
nbItems = int.Parse(firstLineParts[0]);
binCapacity = int.Parse(firstLineParts[1]);
weightsData = new long[nbItems];
string line;
while ((line = input.ReadLine()) != null)
{
string[] lineParts = line.Split(new[] { ' ' }, StringSplitOptions.RemoveEmptyEntries);
weightsData[count] = long.Parse(lineParts[1]);
forbiddenItems.Add(new List<int>());
for (int i = 2; i < lineParts.Length; ++i)
{
forbiddenItems[count].Add(int.Parse(lineParts[i]));
}
count++;
}
}
nbMinBins = (int)Math.Ceiling((double)weightsData.Sum() / binCapacity);
nbMaxBins = Math.Min(2 * nbMinBins, nbItems);
}
public void Dispose()
{
if (optimizer != null)
optimizer.Dispose();
}
void Solve(int limit)
{
// Declare the optimization model
HxModel model = optimizer.GetModel();
bins = new HxExpression[nbMaxBins];
binWeights = new HxExpression[nbMaxBins];
binsUsed = new HxExpression[nbMaxBins];
HxExpression binsArray = model.Array();
HxExpression forbiddenItemsArray = model.Array();
// Set decisions: bins[k] represents the items in bin k
for (int k = 0; k < nbMaxBins; ++k)
{
bins[k] = model.Set(nbItems);
binsArray.AddOperand(bins[k]);
}
for (int i = 0; i < nbItems; ++i)
{
forbiddenItemsArray.AddOperand(model.Array(forbiddenItems[i]));
}
// Find the bin where an item is packed
binForItem = new HxExpression[nbItems];
for (int i = 0; i < nbItems; ++i) {
binForItem[i] = model.Find(binsArray, i);
}
// Each item must be in one bin and one bin only
model.Constraint(model.Partition(bins));
// Create an array and a function to retrieve the item's weight
HxExpression weights = model.Array(weightsData);
HxExpression weightLambda = model.LambdaFunction(i => weights[i]);
for (int k = 0; k < nbMaxBins; ++k)
{
// Weight constraint for each bin
binWeights[k] = model.Sum(bins[k], weightLambda);
model.Constraint(binWeights[k] <= binCapacity);
// Bin k is used if at least one item is in it
binsUsed[k] = model.Count(bins[k]) > 0;
}
// Forbidden constraint for each items
for (int i = 0; i < nbItems; ++i)
{
HxExpression itemsIntersection = model.Intersection(binsArray[binForItem[i]], forbiddenItemsArray[i]);
model.Constraint(model.Count(itemsIntersection) == 0);
}
// Count the used bins
totalBinsUsed = model.Sum(binsUsed);
// Minimize the number of used bins
model.Minimize(totalBinsUsed);
model.Close();
// Parametrize the optimizer
optimizer.GetParam().SetTimeLimit(limit);
// Stop the search if the lower threshold is reached
optimizer.GetParam().SetObjectiveThreshold(0, nbMinBins);
optimizer.Solve();
}
/* Write the solution in a file */
void WriteSolution(string fileName)
{
using (StreamWriter output = new StreamWriter(fileName))
{
for (int k = 0; k < nbMaxBins; ++k)
{
if (binsUsed[k].GetValue() != 0)
{
output.Write("Bin weight: " + binWeights[k].GetValue() + " | Items: ");
HxCollection binCollection = bins[k].GetCollectionValue();
for (int i = 0; i < binCollection.Count(); ++i)
output.Write(binCollection[i] + " ");
output.WriteLine();
}
}
}
}
public static void Main(string[] args)
{
if (args.Length < 1)
{
Console.WriteLine("Usage: BinPackingConflicts inputFile [solFile] [timeLimit]");
Environment.Exit(1);
}
string instanceFile = args[0];
string outputFile = args.Length > 1 ? args[1] : null;
string strTimeLimit = args.Length > 2 ? args[2] : "5";
using (BinPackingConflicts model = new BinPackingConflicts())
{
model.ReadInstance(instanceFile);
model.Solve(int.Parse(strTimeLimit));
if (outputFile != null)
model.WriteSolution(outputFile);
}
}
}
- Compilation / Execution (Windows)
-
javac BinPackingConflicts.java -cp %HX_HOME%\bin\hexaly.jarjava -cp %HX_HOME%\bin\hexaly.jar;. BinPackingConflicts instances\BPPC_1_6_8.txt
- Compilation / Execution (Linux)
-
javac BinPackingConflicts.java -cp /opt/hexaly_13_0/bin/hexaly.jarjava -cp /opt/hexaly_13_0/bin/hexaly.jar:. BinPackingConflicts instances/BPPC_1_6_8.txt
import java.util.*;
import java.io.*;
import com.hexaly.optimizer.*;
public class BinPackingConflicts {
// Number of items
private int nbItems;
// Capacity of each bin
private int binCapacity;
// Maximum number of bins
private int nbMaxBins;
// Minimum number of bins
private int nbMinBins;
// Weight of each item
private long[] weightsData;
// List of forbidden items
private List<List<Integer>> forbiddenItems;
// Hexaly Optimizer
private final HexalyOptimizer optimizer;
// Decision variables
private HxExpression[] bins;
// Bin where the item is
private HxExpression[] binForItem;
// Weight of each bin in the solution
private HxExpression[] binWeights;
// Whether the bin is used in the solution
private HxExpression[] binsUsed;
// Objective
private HxExpression totalBinsUsed;
private BinPackingConflicts(HexalyOptimizer optimizer) {
this.optimizer = optimizer;
}
/* Read instance data */
private void readInstance(String fileName) throws IOException {
int count = 0;
try (Scanner input = new Scanner(new File(fileName))) {
nbItems = input.nextInt();
binCapacity = input.nextInt();
weightsData = new long[nbItems];
forbiddenItems = new ArrayList<>();
input.nextLine();
while (input.hasNextLine()) {
String line = input.nextLine();
String[] lineParts = line.split("\\s+");
weightsData[count] = Integer.parseInt(lineParts[1]);
forbiddenItems.add(new ArrayList<>());
for (int i = 2; i < lineParts.length; ++i) {
forbiddenItems.get(count).add(Integer.parseInt(lineParts[i]));
}
count++;
}
long sumWeights = 0;
for (int i = 0; i < nbItems; ++i) {
sumWeights += weightsData[i];
}
nbMinBins = (int) Math.ceil((double) sumWeights / binCapacity);
nbMaxBins = Math.min(2 * nbMinBins, nbItems);
}
}
private void solve(int limit) {
// Declare the optimization model
HxModel model = optimizer.getModel();
bins = new HxExpression[nbMaxBins];
binWeights = new HxExpression[nbMaxBins];
binsUsed = new HxExpression[nbMaxBins];
HxExpression binsArray = model.array();
HxExpression forbiddenItemsArray = model.array();
// Set decisions: bins[k] represents the items in bin k
for (int k = 0; k < nbMaxBins; ++k) {
bins[k] = model.setVar(nbItems);
binsArray.addOperand(bins[k]);
}
for (int i = 0; i < nbItems; ++i) {
forbiddenItemsArray.addOperand(model.array(forbiddenItems.get(i)));
}
// Find the bin where an item is packed
binForItem = new HxExpression[nbItems];
for (int i = 0; i < nbItems; ++i) {
binForItem[i] = model.find(binsArray, i);
}
// Each item must be in one bin and one bin only
model.constraint(model.partition(bins));
// Create an array and a lambda function to retrieve the item's weight
HxExpression weights = model.array(weightsData);
HxExpression weightLambda = model.lambdaFunction(i -> model.at(weights, i));
for (int k = 0; k < nbMaxBins; ++k) {
// Weight constraint for each bin
binWeights[k] = model.sum(bins[k], weightLambda);
model.constraint(model.leq(binWeights[k], binCapacity));
// Bin k is used if at least one item is in it
binsUsed[k] = model.gt(model.count(bins[k]), 0);
}
// Forbidden constraint for each items
for (int i = 0; i < nbItems; ++i) {
HxExpression itemsIntersection = model.intersection(model.at(binsArray, binForItem[i]),
model.at(forbiddenItemsArray, i));
model.constraint(model.eq(model.count(itemsIntersection), 0));
}
// Count the used bins
totalBinsUsed = model.sum(binsUsed);
// Minimize the number of used bins
model.minimize(totalBinsUsed);
model.close();
// Parametrize the optimizer
optimizer.getParam().setTimeLimit(limit);
// Stop the search if the lower threshold is reached
optimizer.getParam().setObjectiveThreshold(0, nbMinBins);
optimizer.solve();
}
/* Write the solution in a file */
private void writeSolution(String fileName) throws IOException {
try (PrintWriter output = new PrintWriter(fileName)) {
for (int k = 0; k < nbMaxBins; ++k) {
if (binsUsed[k].getValue() != 0) {
output.print("Bin weight: " + binWeights[k].getValue() + " | Items: ");
HxCollection binCollection = bins[k].getCollectionValue();
for (int i = 0; i < binCollection.count(); ++i) {
output.print(binCollection.get(i) + " ");
}
output.println();
}
}
}
}
public static void main(String[] args) {
if (args.length < 1) {
System.err.println("Usage: java BinPackingConflicts inputFile [outputFile] [timeLimit]");
System.exit(1);
}
String instanceFile = args[0];
String outputFile = args.length > 1 ? args[1] : null;
String strTimeLimit = args.length > 2 ? args[2] : "5";
try (HexalyOptimizer optimizer = new HexalyOptimizer()) {
BinPackingConflicts model = new BinPackingConflicts(optimizer);
model.readInstance(instanceFile);
model.solve(Integer.parseInt(strTimeLimit));
if (outputFile != null) {
model.writeSolution(outputFile);
}
} catch (Exception ex) {
System.err.println(ex);
ex.printStackTrace();
System.exit(1);
}
}
}
Results
Hexaly Optimizer reaches an average gap of 0.5% on the Bin Packing Problem with Conflicts (BPPC) in 1 minute of running time, on the instances from the Muritiba BPPLIB research benchmark, with up to 1,000 items to pack. Our Bin Packing with Conflicts (BPPC) benchmark page illustrates how Hexaly Optimizer outperforms traditional general-purpose optimization solvers like Gurobi and OR-Tools on this challenging problem.