Setting an initial solutionΒΆ
LocalSolver does not need a starting solution to launch its algorithms.
However in some cases you may want to force LocalSolver to start from a specific solution. For instance a planning system may consist in reoptimizing every morning the current planning (inserting new tasks and taking into account updated deadlines). In such a case passing an initial solution as input is natural.
Such an initialization will be achieved in LocalSolver by setting the value of
decision variables. For numeric decision variables (boolean, integers and
floats) it is done with the value
attribute in the LSP modeler. For
collection decision variable (lists) we use the add
and clear
functions on this value:
function param() {
// with x an int, y a float and z a list
x.value = 3;
y.value = 4.3;
z.value.clear();
z.value.add(2);
z.value.add(0);
}
Note that only decision variables can be initialized: setting the value of any
other expression will throw an exception. Besides, it is not necessary to set
the values of all decision variables. On the contrary it can make sense to set
the values of some of the decision variables, while relying on LocalSolver to
initialize other values. It is also possible to initialize values to an
infeasible solution, that is to say a solution violating some of the
constraints. In this case, LocalSolver will start from this infeasible solution
and quickly move to a feasible solution. The only requirement is that a
decision variable cannot be given a value outside of its domain. For instance
an integer decision defined as int(3,10)
cannot be given value 15 and a
list cannot be initialized to a collection with duplicated values.
In the APIs, the principle is the same.
Setting the value of a numeric expression is done through the value
attribute of an expression or the set_value
function of the
solution. Lists are modified with add
and clear
.
# With sol a solution and exp and expression
sol.set_value(exp, 0)
exp.value = 1
# With listExpr a list variable
col = listExpr.get_value()
col.clear()
col.add(2)
col.add(0)
col.add(3)
Setting the value of a numeric expression is done with setIntValue
or setValue
for int and boolean decisions or with setDoubleValue
for float decisions. Lists are modified with add
and clear
.
// With ls a LocalSolver object
LSSolution sol = ls.getSolution();
LSExpression intExpr = ls.getModel().getExpression("x");
LSExpression dblExpr = ls.getModel().getExpression("y");
LSExpression listExpr = ls.getModel().getExpression("z");
sol.setValue(intExpr, 12ll);
intExpr.setValue(12ll);
sol.setIntValue(intExpr, 12ll);
intExpr.setIntValue(12ll);
sol.setDoubleValue(dblExpr, 4.8);
dblExpr.setDoubleValue(4.8);
LSCollection col = listExpr.getCollectionValue();
col.clear();
col.add(2);
col.add(0);
col.add(3);
Setting the value of a numeric expression is done with SetIntValue
or SetValue
for int and boolean decisions or with SetDoubleValue
for float decisions. Lists are modified with Add
and Clear
.
// With ls a LocalSolver object
LSSolution sol = ls.GetSolution();
LSExpression intExpr = ls.GetModel().GetExpression("x");
LSExpression dblExpr = ls.GetModel().GetExpression("y");
LSExpression listExpr = ls.GetModel().GetExpression("z");
sol.SetValue(intExpr, 12);
intExpr.SetValue(12);
sol.SetIntValue(intExpr, 12);
intExpr.SetIntValue(12);
sol.SetDoubleValue(dblExpr, 4.8);
dblExpr.SetDoubleValue(4.8);
LSCollection col = listExpr.GetCollectionValue();
col.Clear();
col.Add(2);
col.Add(0);
col.Add(3);
Setting the value of a numeric expression is done with setIntValue
or setValue
for int and boolean decisions or with setDoubleValue
for float decisions. Lists are modified with add
and clear
.
// with ls a LocalSolver object
LSSolution sol = ls.getSolution();
LSExpression intExpr = ls.getModel().getExpression("x");
LSExpression dblExpr = ls.getModel().getExpression("y");
LSExpression listExpr = ls.getModel().getExpression("z");
sol.setValue(intExpr, 12);
intExpr.setValue(12);
sol.setIntValue(intExpr, 12);
intExpr.setIntValue(12);
sol.setDoubleValue(dblExpr, 4.8);
dblExpr.setDoubleValue(4.8);
LSCollection col = listExpr.getCollectionValue();
col.clear();
col.add(2);
col.add(0);
col.add(3);
Note
The actual initial solution when you solve the model can actually differ from the one you’ve just set. During its preprocessing, LocalSolver may have tightened the bounds of some decision variables. As a consequence, it will start with a projection of your initial solution on these tighter bounds.
Setting an initial solution can only be done when the model is closed. In the
LSP modeler, it means it can only be done in the param
function. You can
also set a solution after the solve in the output
function if you want to
retrieve its objective value or to check its feasibility status. In the APIs,
you can set up an initial solution as long as the close()
function has been
called on the model.