This page is for an old version of Hexaly Optimizer.
We recommend that you update your version and read the documentation for the
latest stable release.
Knapsack¶
Principles learned¶
- Create a generic model that uses data
- Read an instance from a file
- Write the solution in a file
Problem¶
The knapsack problem is defined as follows: given a set of items, each with a weight and a value, determine a subset of items in such a way that their total weight is less than a given bound and their total value is as large as possible. This problem is hard to solve in theory.
Download the exampleProgram¶
Note that the way to model is exactly the same than in integer programming: for each item, a 0-1 decision variable is defined which is equal to 1 if the item belongs to the knapsack and 0 otherwise.
Knapsack instances involving millions of objects can be tackled using LocalSolver.
- Execution:
- localsolver knapsack.lsp inFileName=instances/kp_100_1.in [lsTimeLimit=] [solFileName=]
/********** knapsack.lsp **********/
use io;
/* Reads instance data. */
function input() {
local usage = "Usage: localsolver knapsack.lsp "
+ "inFileName=inputFile [solFileName=outputFile] [lsTimeLimit=timeLimit]";
if (inFileName == nil) throw usage;
local inFile = io.openRead(inFileName);
nbItems = inFile.readInt();
weights[i in 0..nbItems-1] = inFile.readInt();
prices[i in 0..nbItems-1] = inFile.readInt();
knapsackBound = inFile.readInt();
}
/* Declares the optimization model. */
function model() {
// 0-1 decisions
x[i in 0..nbItems-1] <- bool();
// weight constraint
knapsackWeight <- sum[i in 0..nbItems-1](weights[i] * x[i]);
constraint knapsackWeight <= knapsackBound;
// maximize value
knapsackValue <- sum[i in 0..nbItems-1](prices[i] * x[i]);
maximize knapsackValue;
}
/* Parameterizes the solver. */
function param() {
if (lsTimeLimit == nil) lsTimeLimit = 20;
}
/* Writes the solution in a file */
function output() {
if(solFileName == nil) return;
local solFile = io.openWrite(solFileName);
solFile.println(knapsackValue.value);
for [i in 0..nbItems-1 : x[i].value == 1]
solFile.print(i + " ");
solFile.println();
}
- Execution (Windows)
- set PYTHONPATH=%LS_HOME%\bin\python27\python knapsack.py instances\kp_100_1.in
- Execution (Linux)
- export PYTHONPATH=/opt/localsolver_XXX/bin/python27/python knapsack.py instances/kp_100_1.in
########## knapsack.py ##########
import localsolver
import sys
if len(sys.argv) < 2:
print ("Usage: python knapsack.py inputFile [outputFile] [timeLimit]")
sys.exit(1)
def read_integers(filename):
with open(filename) as f:
return [int(elem) for elem in f.read().split()]
with localsolver.LocalSolver() as ls:
#
# Reads instance data
#
file_it = iter(read_integers(sys.argv[1]))
# Number of items
nb_items = file_it.next()
# Items properties
weights = [file_it.next() for i in range(nb_items)]
values = [file_it.next() for i in range(nb_items)]
# Knapsack bound
knapsack_bound = file_it.next()
#
# Declares the optimization model
#
model = ls.model
# Decision variables x[i]
x = [model.bool() for i in range(nb_items)]
# Weight constraint
knapsack_weight = model.sum(x[i]*weights[i] for i in range(nb_items))
model.constraint(knapsack_weight <= knapsack_bound)
# Maximize value
knapsack_value = model.sum(x[i]*values[i]for i in range(nb_items))
model.maximize(knapsack_value)
model.close()
#
# Parameterizes the solver
#
if len(sys.argv) >= 4: ls.create_phase().time_limit = int(sys.argv[3])
else: ls.create_phase().time_limit = 20
ls.solve()
#
# Writes the solution in a file
#
if len(sys.argv) >= 3:
with open(sys.argv[2], 'w') as f:
f.write("%d\n" % knapsack_value.value)
for i in range(nb_items):
if x[i].value != 1: continue
f.write("%d " % i)
f.write("\n")
- Compilation / Execution (Windows)
- cl /EHsc knapsack.cpp -I%LS_HOME%\include /link %LS_HOME%\bin\localsolver.dll.libknapsack instances\kp_100_1.in
- Compilation / Execution (Linux)
- g++ knapsack.cpp -I/opt/localsolver_XXX/include -llocalsolver -lpthread -o knapsack./knapsack instances/kp_100_1.in
/********** knapsack.cpp **********/
#include <iostream>
#include <fstream>
#include <vector>
#include "localsolver.h"
using namespace localsolver;
using namespace std;
class Knapsack {
public:
/* Number of items. */
int nbItems;
/* Items properties. */
vector<lsint> weights;
vector<lsint> values;
/* Knapsack bound */
lsint knapsackBound;
/* LocalSolver. */
LocalSolver localsolver;
/* Decision variables. */
vector<LSExpression> x;
/* Objective. */
LSExpression knapsackValue;
/* Solution (items in the knapsack). */
vector<int> solution;
/* Reads instance data. */
void readInstance(const string& fileName) {
ifstream infile(fileName.c_str());
if (!infile.is_open()) {
cerr << "File " << fileName << " cannot be opened." << endl;
exit(1);
}
infile >> nbItems;
weights.resize(nbItems);
for (int i = 0; i < nbItems; i++)
infile >> weights[i];
values.resize(nbItems);
for (int i = 0; i < nbItems; i++)
infile >> values[i];
infile >> knapsackBound;
infile.close();
}
void solve(int limit) {
try {
/* Declares the optimization model. */
LSModel model = localsolver.getModel();
// Decision variables x[i]
x.resize(nbItems);
for (int i = 0; i < nbItems; i++) {
x[i] = model.boolVar();
}
// Weight constraint
LSExpression knapsackWeight = model.sum();
for (int i = 0; i < nbItems; i++) {
LSExpression itemWeight = x[i]*weights[i];
knapsackWeight += itemWeight;
}
model.constraint(knapsackWeight <= knapsackBound);
// Maximize value
knapsackValue = model.sum();
for (int i = 0; i < nbItems; i++) {
LSExpression itemValue = x[i]*values[i];
knapsackValue += itemValue;
}
model.maximize(knapsackValue);
model.close();
/* Parameterizes the solver. */
LSPhase phase = localsolver.createPhase();
phase.setTimeLimit(limit);
localsolver.solve();
solution.clear();
for (int i = 0; i < nbItems; ++i)
if (x[i].getValue() == 1)
solution.push_back(i);
} catch (const LSException& e) {
cout << "LSException:" << e.getMessage() << endl;
exit(1);
}
}
/* Writes the solution in a file */
void writeSolution(const string& fileName) {
ofstream outfile(fileName.c_str());
if (!outfile.is_open()) {
cerr << "File " << fileName << " cannot be opened." << endl;
exit(1);
}
outfile << knapsackValue.getValue() << endl;
for (unsigned int i = 0; i < solution.size(); ++i)
outfile << solution[i] << " ";
outfile << endl;
outfile.close();
}
};
int main(int argc, char** argv) {
if (argc < 2) {
cout << "Usage: knapsack inputFile [outputFile] [timeLimit]" << endl;
exit(1);
}
const char* instanceFile = argv[1];
const char* solFile = argc > 2 ? argv[2] : NULL;
const char* strTimeLimit = argc > 3 ? argv[3] : "20";
Knapsack model;
model.readInstance(instanceFile);
model.solve(atoi(strTimeLimit));
if(solFile != NULL)
model.writeSolution(solFile);
return 0;
}
- Compilation / Execution (Windows)
- javac Knapsack.java -cp %LS_HOME%\bin\localsolver.jarjava -cp %LS_HOME%\bin\localsolver.jar;. Knapsack instances\kp_100_1.in
- Compilation/Execution (Linux)
- javac Knapsack.java -cp /opt/localsolver_XXX/bin/localsolver.jarjava -cp /opt/localsolver_XXX/bin/localsolver.jar:. Knapsack instances/kp_100_1.in
/********** Knapsack.java **********/
import java.util.*;
import java.io.*;
import localsolver.*;
public class Knapsack {
/* Number of items. */
int nbItems;
/* Items properties. */
int[] weights;
int[] values;
/* Knapsack bound */
int knapsackBound;
/* Solver. */
LocalSolver localsolver;
/* LS Program variables. */
LSExpression[] x;
/* Objective. */
LSExpression knapsackValue;
/* Solutions (classes at each position). */
List<Integer> solutions;
/* Reads instance data. */
void readInstance(String fileName) {
try {
Scanner input = new Scanner(new File(fileName));
nbItems = input.nextInt();
weights = new int[nbItems];
for (int i = 0; i < nbItems; i++) {
weights[i] = input.nextInt();
}
values = new int[nbItems];
for (int i = 0; i < nbItems; i++) {
values[i] = input.nextInt();
}
knapsackBound = input.nextInt();
input.close();
} catch (IOException ex) {
ex.printStackTrace();
}
}
void solve(int limit) {
try {
/* Declares the optimization model. */
localsolver = new LocalSolver();
LSModel model = localsolver.getModel();
// boolean variables x[i]
x = new LSExpression[nbItems];
for (int i = 0; i < nbItems; i++) {
x[i] = model.boolVar();
}
// weight constraint
LSExpression knapsackWeight = model.sum();
for (int i = 0; i < nbItems; i++) {
LSExpression itemWeight = model.prod(x[i],weights[i]);
knapsackWeight.addOperand(itemWeight);
}
model.constraint(model.leq(knapsackWeight,knapsackBound));
// maximize value
knapsackValue = model.sum();
for (int i = 0; i < nbItems; i++) {
LSExpression itemValue = model.prod(x[i],values[i]);
knapsackValue.addOperand(itemValue);
}
model.maximize(knapsackValue);
model.close();
/* Parameterizes the solver. */
LSPhase phase = localsolver.createPhase();
phase.setTimeLimit(limit);
localsolver.solve();
solutions = new ArrayList<Integer>();
for (int i = 0; i < nbItems; i++)
if (x[i].getValue() == 1)
solutions.add(i);
} catch (LSException e) {
System.out.println("LSException:" + e.getMessage());
System.exit(1);
}
}
/* Writes the solution in a file */
void writeSolution(String fileName) {
try {
BufferedWriter output = new BufferedWriter(new FileWriter(fileName));
output.write(knapsackValue.getValue() + "\n");
for (int i = 0; i < solutions.size(); ++i)
output.write(solutions.get(i) + " ");
output.write("\n");
output.close();
} catch (IOException ex) {
ex.printStackTrace();
}
}
public static void main(String[] args) {
if (args.length < 1) {
System.out.println("Usage: java Knapsack inputFile [outputFile] [timeLimit]");
System.exit(1);
}
String instanceFile = args[0];
String outputFile = args.length > 1 ? args[1] : null;
String strTimeLimit = args.length > 2 ? args[2] : "20";
Knapsack model = new Knapsack();
model.readInstance(instanceFile);
model.solve(Integer.parseInt(strTimeLimit));
if(outputFile != null) {
model.writeSolution(outputFile);
}
}
}
- Compilation/Execution (Windows)
- copy %LS_HOME%\bin\*net.dll .csc Knapsack.cs /reference:localsolvernet.dllKnapsack instances\kp_100_1.in
/********** Knapsack.cs **********/
using System;
using System.IO;
using System.Collections.Generic;
using localsolver;
public class Knapsack : IDisposable
{
// Number of items
int nbItems;
// Items properties.
int[] weights;
int[] values;
// Knapsack bound.
int knapsackBound;
// Solver.
LocalSolver localsolver;
// LS Program variables.
LSExpression[] x;
// Objective.
LSExpression knapsackValue;
// Solutions (items in the knapsack).
List<int> solutions;
public Knapsack ()
{
localsolver = new LocalSolver();
}
/* Reads instance data. */
void ReadInstance(string fileName)
{
using (StreamReader input = new StreamReader(fileName))
{
nbItems = int.Parse(input.ReadLine());
weights = new int[nbItems];
values = new int[nbItems];
string[] splittedWeights = input.ReadLine().Split(' ');
if (splittedWeights.Length < nbItems) {
Console.WriteLine("Wrong number of item weights");
System.Environment.Exit(1);
}
for (int i = 0; i < nbItems; i++) weights[i] = int.Parse(splittedWeights[i]);
string[] splittedValues = input.ReadLine().Split(' ');
if (splittedValues.Length < nbItems) {
Console.WriteLine("Wrong number of item values");
System.Environment.Exit(1);
}
for (int i = 0; i < nbItems; i++) values[i] = int.Parse(splittedValues[i]);
knapsackBound = int.Parse(input.ReadLine());
}
}
public void Dispose ()
{
localsolver.Dispose();
}
void Solve(int limit)
{
/* Declares the optimization model. */
localsolver = new LocalSolver();
LSModel model = localsolver.GetModel();
// Decision variables x[i]
x = new LSExpression[nbItems];
for (int i = 0; i < nbItems; i++)
{
x[i] = model.Bool();
}
// weight constraint
LSExpression knapsackWeight = model.Sum();
for (int i = 0; i < nbItems; i++)
{
knapsackWeight.AddOperand(x[i]*weights[i]);
}
model.Constraint(knapsackWeight <= knapsackBound);
// maximize value
knapsackValue = model.Sum();
for (int i = 0; i < nbItems; i++)
{
knapsackValue.AddOperand(x[i]*values[i]);
}
model.Maximize(knapsackValue);
model.Close();
/* Parameterizes the solver. */
LSPhase phase = localsolver.CreatePhase();
phase.SetTimeLimit(limit);
localsolver.Solve();
solutions = new List<int>();
for (int i = 0; i < nbItems; ++i)
{
if (x[i].GetValue() == 1) solutions.Add(i);
}
}
/* Writes the solution in a file */
void WriteSolution(string fileName)
{
using (StreamWriter output = new StreamWriter(fileName))
{
output.WriteLine(knapsackValue.GetValue());
for (int i = 0; i < solutions.Count; ++i)
output.Write(solutions[i] + " ");
output.WriteLine();
}
}
public static void Main (string[] args)
{
if (args.Length < 1)
{
Console.WriteLine ("Usage: Knapsack inputFile [solFile] [timeLimit]");
System.Environment.Exit (1);
}
String instanceFile = args [0];
String outputFile = args.Length > 1 ? args [1] : null;
String strTimeLimit = args.Length > 2 ? args [2] : "20";
using (Knapsack model = new Knapsack())
{
model.ReadInstance (instanceFile);
model.Solve (int.Parse (strTimeLimit));
if (outputFile != null)
model.WriteSolution (outputFile);
}
}
}