This page is for an old version of Hexaly Optimizer. We recommend that you update your version and read the documentation for the latest stable release.

P-median¶

Principles learned¶

  • Create a generic model that uses data
  • Define the actual set of decision variables
  • Use non-linearities: ternary operator, minimizing a sum of “min”

Problem¶

../_images/pmedian.png

The pmedian problem is defined as follows: given a set I={1...n} of locations and a transportation cost W between each pair of locations. Select a subset S of p locations minimizing the sum of the distances between each location and the closest one in S.

Download the example

Data¶

The data files pmed1.in, pmed2.in, ..., pmed40.in provided come from the OR-LIB. They are the 40 test problems from Table 2 of J.E.Beasley “A note on solving large p-median problems” European Journal of Operational Research 21 (1985) 270-273.

Each instance file contains the number of locations n, the number of edges in the original instance, the number of locations to select p and the distance matrix computed from the original file using Floyd’s algorithm.

Program¶

In this problem, once you know the locations that are in the subset S, you can deduce which location in S is the closest to each location.

The general idea behind the model is than once one know the locations that are in the subset S, one can deduce the distance between each location and the closest location in S. There is no need to actually know which location is the closest in the model, just the closest distance. It can still be obtained through post-processing if one need to know this information to print out the results.

Thus, the only decision variables are the booleans x[i], equal to 1 if the ith location is in the subset S. The expressions costs[i][j] are created to store the transportation cost between location i and j. This cost is:

  • edge weight between i and j if j is in the subset S
  • infinity otherwise (represented by 2 times the maximum edge weight)

The transportation cost between each location i and the closest location in S is represented by cost[i]: it is the minimum value among costs[i][j] for all j. The objective is then to minimize the sum of these transportation costs.

Execution:
localsolver pmedian.lsp inFileName=instances/pmed1.in [lsTimeLimit=] [solFileName=]
/********** pmedian.lsp **********/

use io;

/* Reads instance data. */
function input(){
    local usage = "Usage: localsolver pmedian.lsp "
        + "inFileName=inputFile [solFileName=outputFile] [lsTimeLimit=timeLimit]";

    if (inFileName == nil) throw usage;

    local inFile = io.openRead(inFileName);
    N = inFile.readInt();
    E = inFile.readInt();
    p = inFile.readInt();
    wmax = 0;
    
    for [i in 1..N][j in 1..N] {
        w[i][j] = inFile.readInt();
        if(w[i][j] > wmax) wmax = w[i][j];
    }
}

/* Declares the optimization model. */
function model(){
    // One variable for each location     
    x[1..N] <- bool();

    // No more than p locations are selected
    constraint sum[i in 1..N] (x[i]) <= p;

    // Costs between location i and j is w[i][j] if j is selected in S or 2*wmax if not
    costs[i in 1..N][j in 1..N] <- x[j] ? w[i][j] : 2*wmax;

    // Cost between location i and the closest selected location
    cost[i in 1..N] <- min[j in 1..N] (costs[i][j]);

    // Minimize the total cost
    totalCost <- sum[i in 1..N] (cost[i]);
    minimize totalCost;
}

/* Parameterizes the solver. */
function param(){
    if(lsTimeLimit == nil) lsTimeLimit = 10;
    if(lsNbThreads == nil) lsNbThreads = 2;
}

/* Writes the solution in a file following the following format: 
 * - value of the objective
 * - indiced of the selected locations (between 0 and N-1) */
function output() {
    if(solFileName == nil) return; 
    local solFile = io.openWrite(solFileName);
    solFile.println(totalCost.value);
    for [i in 1..N : x[i].value == 1] {
        solFile.print(i-1, " ");
    }
    solFile.println("");
}
Execution (Windows)
set PYTHONPATH=%LS_HOME%\bin\python27\
python pmedian.py instances\pmed1.in
Execution (Linux)
export PYTHONPATH=/opt/localsolver_XXX/bin/python27/
python pmedian.py instances/pmed1.in
########## pmedian.py ##########

import localsolver
import sys

if len(sys.argv) < 2:
    print ("Usage: python pmedian.py inputFile [outputFile] [timeLimit]")
    sys.exit(1)


def read_integers(filename):
    with open(filename) as f:
        return [int(elem) for elem in f.read().split()]


with localsolver.LocalSolver() as ls:

    #
    # Reads instance data
    #

    file_it = iter(read_integers(sys.argv[1]))
    # Number of locations
    N = file_it.next()
    # Number of edges between locations
    E = file_it.next()
    # Size of the subset S of locations
    p = file_it.next()

    # w : Weight matrix of the shortest path between locations
    # wmax : Maximum distance between two locations
    wmax = 0;
    w = [None]*N
    for i in range(N):
        w[i] = [None]*N
        for j in range(N):
            w[i][j] = file_it.next()
            if(w[i][j] >  wmax):
                wmax = w[i][j];

    #
    # Declares the optimization model
    #
    m = ls.model

    # Decision variables
    x = [m.bool() for i in range(N)]

    # No more than p locations are selected
    opened_locations = m.sum(x[i] for i in range(N))
    m.constraint(opened_locations <= p)

    # Costs between location i and j is w[i][j] if j is selected in S or 2*wmax if not
    costs = [None]*N
    for i in range(N):
        costs[i] = [None]*N
        for j in range(N):
            costs[i][j] = m.iif(x[j], w[i][j], 2*wmax)

    # Cost between location i and the closest selected location
    cost = [None]*N
    for i in range(N):
        cost[i] = m.min(costs[i][j] for j in range(N))

    # Minimize the total cost
    total_cost = m.sum(cost[i] for i in range(N))
    m.minimize(total_cost)

    m.close()

    #
    # Parameterizes the solver
    #
    ls.param.nb_threads = 2
    if len(sys.argv) >= 4: ls.create_phase().time_limit = int(sys.argv[3])
    else: ls.create_phase().time_limit = 20

    ls.solve()

    #
    # Writes the solution in a file following the following format: 
    # - value of the objective
    # - indiced of the selected locations (between 0 and N-1) */
    #
    if len(sys.argv) >= 3:
        with open(sys.argv[2], 'w') as f:
            f.write("%d\n" % total_cost.value)
            for i in range(N):
                if(x[i].value == 1):
                    f.write("%d " % i)
            f.write("\n")
Compilation / Execution (Windows)
cl /EHsc pmedian.cpp -I%LS_HOME%\include /link %LS_HOME%\bin\localsolver.dll.lib
pmedian instances\pmed1.in
Compilation / Execution (Linux)
g++ pmedian.cpp -I/opt/localsolver_XXX/include -llocalsolver -lpthread -o pmedian
./pmedian instances/pmed1.in
/********** pmedian.cpp **********/

#include <iostream>
#include <sstream>
#include <fstream>
#include <vector>
#include "localsolver.h"

using namespace localsolver;
using namespace std;


class Pmedian{
public:
    /* Number of locations. */
    lsint N;

    /* Number of edges between locations. */
    lsint E;

    /* Size of the subset S of locations. */
    lsint p;

    /* Weight matrix of the shortest path between locations. */
    vector< vector< lsint > > w;

    /* Maximum distance between two locations. */
    lsint wmax;

    /* LocalSolver. */
    LocalSolver localsolver;

    /* Decisions variables */
    vector< LSExpression > x;
    
    /* Objective */
    LSExpression totalCost;

    /* Vector of selected locations */
    vector< int > solution;

    /* Reads instance data. */
    void readInstance(const string & fileName){
        ifstream infile(fileName.c_str());
        if(!infile.is_open()){
            cerr << "File " << fileName << " cannot be opened." << endl;
            exit(1);
        }
        infile >> N;
        infile >> E;
        infile >> p;

        w.resize(N);
        wmax = 0;
        for(int i = 0; i < N; i++){
            w[i].resize(N);
            for(int j = 0; j < N; j++){
                infile >> w[i][j];
                if(w[i][j] >    wmax){
                    wmax = w[i][j];
                }
            }
        }
        infile.close();
    }

    /* Declares the optimization model. */
    void solve(int limit){
        try{
            LSModel m = localsolver.getModel();

            // Decision variables
            x.resize(N);
            for(int i = 0; i < N; i++)
                x[i] = m.boolVar();
        
            // No more than p locations are selected
            LSExpression openedLocations = m.sum(x.begin(), x.end());
            m.constraint(openedLocations <= p);

            // Costs between location i and j is w[i,j] if j is selected in S or 2*wmax if not.
            vector<vector<LSExpression> > costs(N);
            for(int i = 0; i < N; i++){
                costs[i].resize(N);
                for(int j = 0; j < N; j++){
                    costs[i][j] = m.iif(x[j], w[i][j], 2*wmax);
                }
            }
            
            // Cost between location i and the closest selected location.
            vector<LSExpression> cost(N);
            for(int i = 0; i < N; i++){
                cost[i] = m.min(costs[i].begin(), costs[i].end());
            }
            
            // Minimize the total cost
            totalCost = m.sum(cost.begin(),cost.end());
            m.minimize(totalCost);
            m.close();
            
            /* Parameterizes the solver. */
            LSPhase phase = localsolver.createPhase();
            phase.setTimeLimit(limit);
            localsolver.solve();

            solution.clear();
            for(int i = 0; i < N; i++){
                if(x[i].getValue() == 1){
                    solution.push_back(i);
                }
            }
        }
        catch (const LSException& e){
            cout << "LSException:" << e.getMessage() << endl;
            exit(1);
        }
    }

    /* Writes the solution in a file following the following format: 
	 * each line contains the index of a selected location (between 0 and N-1) */
    void writeSolution(const string& fileName){
        ofstream outfile(fileName.c_str());
        if (!outfile.is_open()){
            cerr << "File " << fileName << " cannot be opened." << endl;
            exit(1);
        }
        outfile << totalCost.getValue() << endl;
        for(int i = 0; i < solution.size(); i++)
            outfile << solution[i] << " ";
        outfile << endl;
        outfile.close();
    }
};


int main(int argc, char** argv){
    if(argc < 2){
        cout << "Usage: pmedian inputFile [outputFile] [timeLimit] " << endl;
        exit(1);
    }

    const char* instanceFile = argv[1];
    const char* solFile = argc > 2 ? argv[2] : NULL;
    const char* strTimeLimit = argc > 3 ? argv[3] : "20";

    Pmedian model;
    model.readInstance(instanceFile);
    model.solve(atoi(strTimeLimit));
    if(solFile != NULL)
        model.writeSolution(solFile);
    return 0;
}
Compilation / Execution (Windows)
javac Pmedian.java -cp %LS_HOME%\bin\localsolver.jar
java -cp %LS_HOME%\bin\localsolver.jar;. Pmedian instances\pmed1.in
Compilation/Execution (Linux)
javac Pmedian.java -cp /opt/localsolver_XXX/bin/localsolver.jar
java -cp /opt/localsolver_XXX/bin/localsolver.jar:. Pmedian instances/pmed1.in
/********** Pmedian.java **********/

import java.util.*;
import java.io.*;
import localsolver.*;


public class Pmedian{

    /* Number of locations */
    int N;
    
    /* Number of edges between locations. */
    int E;
    
    /* Size of the subset S of locations. */
    int p;
    
    /* Weight matrix of the shortest path between locations. */
    int[][] w;

    /* Maximum distance between two locations. */
    int wmax;

    /* LocalSolver. */
    LocalSolver localsolver;

    /* Decisions variables */
    LSExpression[] x;

    /* Objective */
    LSExpression totalCost;

    /* List of selected locations */
    List<Integer> solution;

    /* Reads instance data. */
    void readInstance(String fileName){
        try{
            Scanner input = new Scanner(new File(fileName));
            N = input.nextInt();
            E = input.nextInt();
            p = input.nextInt();

            w = new int[N][N];
            wmax = 0;
            for(int i = 0; i < N; i++){
                for(int j = 0; j < N; j++){
                    w[i][j] = input.nextInt();
                    if(w[i][j] > wmax)
                    wmax = w[i][j];
                }
            }
        } catch(IOException e){
            e.printStackTrace();
        }
    }

    /* Declares the optimization model. */
    void solve(int limit){
        try{
            localsolver = new LocalSolver();
            LSModel model = localsolver.getModel();

            // Boolean decisions
            x = new LSExpression[N];
            for(int i = 0; i < N; i++) {
                x[i] = model.boolVar();
            }

            // No more than p locations are selected
            LSExpression openedLocations = model.sum();
            for(int i = 0; i < N; i++) {
                openedLocations.addOperand(x[i]);
            }

            model.constraint(model.leq(openedLocations,p));

            // Costs between location i and j is w[i][j] if j is selected in S or 2*wmax if not
            LSExpression[][] costs = new LSExpression[N][N];
            for(int i = 0; i < N; i++) {
                for(int j = 0; j < N; j++) {
                    costs[i][j] = model.iif(x[j], w[i][j], 2*wmax);
                }
            }

            // Cost between location i and the closest selected location
            LSExpression[] cost = new LSExpression[N];
            for(int i = 0; i < N; i++) {
                cost[i] = model.min();
                for(int j = 0; j < N; j++) {
                    cost[i].addOperand(costs[i][j]);
                }
            }
        
            // Minimize the total cost
            totalCost = model.sum();
            for(int i = 0; i < N; i++){
                totalCost.addOperand(cost[i]);
            }
            model.minimize(totalCost);

            model.close();

            /* Parameterizes the solver. */
            LSPhase phase = localsolver.createPhase();
            phase.setTimeLimit(limit);
            localsolver.solve();

            solution = new ArrayList<Integer>();
            for(int i = 0; i < N; i++){
                if(x[i].getValue() == 1)
                    solution.add(i);
            }
        } catch(LSException e){
            System.out.println("LSException:" + e.getMessage());
            System.exit(1);
        }
    }

    /* Writes the solution in a file following the following format: 
     * - value of the objective
     * - indiced of the selected locations (between 0 and N-1) */
    void writeSolution(String fileName){
        try{
            BufferedWriter output = new BufferedWriter(new FileWriter(fileName));
            output.write(totalCost.getValue() + "\n");
            for (int i = 0; i < solution.size(); i++){
                output.write(solution.get(i) + " " );
            }
            output.write("\n");
            output.close();
        } catch(IOException e){
            e.printStackTrace();
        }
    }

    public static void main(String[] args){
        if (args.length < 1) {
            System.out.println("Usage: java Pmedian inputFile [outputFile] [timeLimit]");
            System.exit(1);
        }

        String instanceFile = args[0];
        String outputFile = args.length > 1 ? args[1] : null;
        String strTimeLimit = args.length > 2 ? args[2] : "10";

        Pmedian model = new Pmedian();
        model.readInstance(instanceFile);
        model.solve(Integer.parseInt(strTimeLimit));
        if(outputFile != null) {
            model.writeSolution(outputFile);
        }
    }
}
Compilation/Execution (Windows)
copy %LS_HOME%\bin\*net.dll .
csc Pmedian.cs /reference:localsolvernet.dll
Pmedian instances\pmed1.in
/********** Pmedian.cs **********/

using System;
using System.IO;
using System.Collections.Generic;
using localsolver;


public class Pmedian : IDisposable
{
    // Number of locations.
    int N;

    // Number of edges between locations.
    int E;

    // Size of the subset S of locations.
    int p;

    // Weight matrix of the shortest path beween locations.
    int[,] w;

    // Maximum distance between two locations.
    int wmax;

    // LocalSolver.
    LocalSolver localsolver;

    // Decision variables.
    LSExpression[] x;

    // Objective.
    LSExpression totalCost;

    // List of selected locations
    List<int> solution;

    public Pmedian ()
    {
        localsolver = new LocalSolver();
    }

    /* Reads instance data. */
    public void ReadInstance(string fileName)
    {
        using (StreamReader input = new StreamReader(fileName))
        {
            var tokens = input.ReadLine().Split(' ');
            N = int.Parse(tokens[0]);
            E = int.Parse(tokens[1]);
            p = int.Parse(tokens[2]);
            
            w = new int[N,N];
            
            wmax = 0;
            
            for(int i = 0; i < N; i++)
            {
                tokens = input.ReadLine().Split(' ');
                for(int j = 0; j < N; j++)
                {
                    w[i,j] = int.Parse(tokens[j]);
                    if(w[i,j] > wmax)
                        wmax = w[i,j];
                }
            }
        }
    }

    public void Dispose ()
    {
        localsolver.Dispose();
    }

    /* Declares the optimization model. */
    public void Solve(int limit)
    {
        localsolver = new LocalSolver();
        LSModel model = localsolver.GetModel();
        x = new LSExpression[N];
        
        // Boolean decisions.
        for(int i = 0 ; i < N; i++)
            x[i] = model.Bool();

        // No more than p locations are selected.
        LSExpression openedLocations = model.Sum();
        for(int i = 0; i < N; i++)
            openedLocations.AddOperand(x[i]);

        model.Constraint(openedLocations <= p);
        
        // Costs between location i and j is w[i,j] if j is selected in S or 2*wmax if not.
        LSExpression[,] costs = new LSExpression[N,N];
        for(int i = 0; i < N; i++)
            for(int j = 0; j < N; j++)
                costs[i,j] = model.If(x[j], w[i,j], 2*wmax);
        
        // Cost between location i and the closest selected location.
        LSExpression[] cost = new LSExpression[N];
        for(int i = 0; i < N; i++)
        {
            cost[i] = model.Min();
            for(int j = 0; j < N; j++)
            {
                cost[i].AddOperand(costs[i,j]);
            }
        }
    
        // Minimize the total cost.
        totalCost = model.Sum();
        for(int i = 0; i < N; i++)
            totalCost.AddOperand(cost[i]);
        
        model.Minimize(totalCost);

        model.Close();
        
        /* Parameterizes the solver. */
        LSPhase phase = localsolver.CreatePhase();
        phase.SetTimeLimit(limit);
        localsolver.Solve();
        
        solution = new List<int>();
        for(int i = 0; i < N; i++)
            if(x[i].GetValue() == 1)
                solution.Add(i);
    }
    
    /* Writes the solution in a file following the following format: 
     * - value of the objective
     * - indiced of the selected locations (between 0 and N-1) */
    public void WriteSolution(string fileName)
    {
        using (StreamWriter output = new StreamWriter(fileName))
        {
            output.WriteLine(totalCost.GetValue());
            for (int i = 0; i < solution.Count; ++i)
                output.Write(solution[i] + " ");
            output.WriteLine();
        }
    }
    
    public static void Main (string[] args)
    {
        if (args.Length < 1)
        {
            Console.WriteLine ("Usage: Pmedian inputFile [outputFile] [timeLimit]");
            System.Environment.Exit (1);
        }
        string instanceFile = args [0];
        string outputFile = args.Length > 1 ? args [1] : null;
        string strTimeLimit = args.Length > 2 ? args [2] : "20";
        
        using (Pmedian model = new Pmedian())
        {
            model.ReadInstance (instanceFile);
            model.Solve (int.Parse (strTimeLimit));
            if (outputFile != null)
                model.WriteSolution (outputFile);    
        }
    }
}