This page is for an old version of Hexaly Optimizer. We recommend that you update your version and read the documentation for the latest stable release.

Stochastic Job Shop Scheduling Problem¶

Principles learned¶

  • Add multiple list decision variables

  • Constrain the number of elements in a list

  • Use multidimensional arrays

  • Use interval decision variables

  • Order interval decision variables by pairing them up with a list variable

Problem¶

../_images/stochastic_jobshop.svg

A set of jobs has to be processed on every machine of the shop. Each job consists in an ordered sequence of tasks (called activities), each representing the processing of the job on one of the machines. Each job has one activity per machine, and cannot start an activity while the previous activity of the job is not completed. Each activity has a given processing time (which depends on the scenario) and each machine can only process one activity at a time.

We also consider multiple scenarios, all of which represent the same set of jobs (and subsequently the same set of activites). What changes between each scenario is the time taken to process each activity. For a given sequence of jobs and a given scenario, the makespan (for that scenario) is the time when all jobs have been processed. It should be noted that the same sequence of jobs will have different resulting makespans for each scenario.

The goal is therefore to find a sequence of jobs that minimizes the maximum makespan over all the scenarios -ie the sequence of jobs that minimizes the time after which all jobs have been processed in every scenario.

Download the example


Data¶

The format of the data files is as follows:

  • First line: number of jobs, number of machines, number of scenarios.

  • From the fourth line, for each scenario:

    • For each job: the processing time on each machine (given in processing order).

  • For each job: the processing order (ordered list of visited machines, same for all scenarios).

Program¶

The model is very similar to the original Job Shop Problem, to which we add different scenarios. The original decision variables remain almost unchanged, with the exception that we now take into account the different scenarios by adding an extra dimension to the array of task intervals, as well as to the array representing their respective processing time. Regardless, we keep interval decision variables to model the time ranges of the activities, and a list decision variable for each machine (representing the order of the activities scheduled on this machine). The chosen order in which each machine will process the jobs is the same between all scenarios.

The precedence and disjunctive resource constraints are modeled in the same way as for the original job shop problem and are now established for each scenario. The makespan to be minimized is the time when all jobs have been processed in each scenario.

Execution:
localsolver stochastic_jobshop.lsp inFileName=instances/ft20_10.txt [outFileName=] [lsTimeLimit=]
use io;

/* Read instance data. */
function input() {
    local usage = "Usage: localsolver stochastic_jobshop.lsp inFileName=instanceFile "
            + "[outFileName=outputFile] [lsTimeLimit=timeLimit]";
    if (inFileName == nil) throw usage;

    inFile = io.openRead(inFileName);
    inFile.readln();
    nbJobs = inFile.readInt();
    nbMachines = inFile.readInt();
    nbScenarios = inFile.readInt();
    inFile.readln();
    
    // Processing times for each job on each machine (given in the processing order)
    for [s in 0...nbScenarios][j in 0...nbJobs][m in 0...nbMachines] {
        processingTimesInProcessingOrderPerScenario[s][j][m] = inFile.readInt();
    }

    inFile.readln();
    for [j in 0...nbJobs][k in 0...nbMachines] {
        local m = inFile.readInt()-1;

        // Processing order of machines for each job
        machineOrder[j][k] = m;

        for [s in 0...nbScenarios] {
            // Reorder processing times: processingTime[s][j][m] is the processing time of the
            // task of job j that is processed on machine m in the scenario s
            processingTimePerScenario[s][j][m] = processingTimesInProcessingOrderPerScenario[s][j][k];
        }
    }
    inFile.close();

    // Trivial upper bounds for the start times of the tasks
    maxStart = max[s in 0...nbScenarios](sum[j in 0...nbJobs][m in 0...nbMachines](processingTimePerScenario[s][j][m]));
}


/* Declare the optimization model */
function model() {
    // Interval decisions: time range of each task
    // tasks[s][j][m] is the interval of time of the task of job j which is processed
    // on machine m in the scenario s
    tasks[s in 0...nbScenarios][j in 0...nbJobs][m in 0...nbMachines] <- interval(0, maxStart);

    // Task duration constraints
    for [s in 0...nbScenarios][j in 0...nbJobs][m in 0...nbMachines]
        constraint length(tasks[s][j][m]) == processingTimePerScenario[s][j][m];

    // Precedence constraints between the tasks of a job
    for [s in 0...nbScenarios][j in 0...nbJobs][k in 0...nbMachines-1]
        constraint tasks[s][j][machineOrder[j][k]] < tasks[s][j][machineOrder[j][k + 1]];

    // Sequence of tasks on each machine
    jobsOrder[m in 0...nbMachines] <- list(nbJobs);

    for [m in 0...nbMachines] {
        // Each job has a task scheduled on each machine
        constraint count(jobsOrder[m]) == nbJobs;

        // Disjunctive resource constraints between the tasks on a machine
        for [s in 0...nbScenarios] {
            constraint and(0...nbJobs-1,
                    i => tasks[s][jobsOrder[m][i]][m] < tasks[s][jobsOrder[m][i + 1]][m]);
        }
    }

    // Minimize the maximum makespan: end of the last task of the last job
    // over all scenarios
    makespans[s in 0...nbScenarios] <- max[j in 0...nbJobs](end(tasks[s][j][machineOrder[j][nbMachines - 1]]));
    maxMakespan <- max[s in 0...nbScenarios](makespans[s]);
    minimize maxMakespan;
}

/* Parameterize the solver */
function param() {
    if (lsTimeLimit == nil) lsTimeLimit = 60;
}

/* Write the solution in a file with the following format:
 *  - for each machine, the job sequence */
function output() {
    if (outFileName != nil) {
        outFile = io.openWrite(outFileName);
        println("Solution written in file ", outFileName);
        for [m in 0...nbMachines]
            outFile.println[j in 0...nbJobs](jobsOrder[m].value[j], " ");
    }
}
Execution (Windows)
set PYTHONPATH=%LS_HOME%\bin\python
python stochastic_jobshop.py instances\ft20_10.txt
Execution (Linux)
export PYTHONPATH=/opt/localsolver_12_5/bin/python
python stochastic_jobshop.py instances/ft20_10.txt
import localsolver
import sys


def read_instance(filename):
    with open(filename) as f:
        lines = f.readlines()

    first_line = lines[1].split()
    # Number of jobs
    nb_jobs = int(first_line[0])
    # Number of machines
    nb_machines = int(first_line[1])
    # Number of scenarios
    nb_scenarios = int(first_line[2])

    # Processing times for each job on each machine (given in the processing order)
    processing_times_in_processing_order_per_scenario = [[[int(lines[s*(nb_jobs+1)+i].split()[j])
                                                           for j in range(nb_machines)]
                                                          for i in range(3, 3 + nb_jobs)]
                                                         for s in range(nb_scenarios)]

    # Processing order of machines for each job
    machine_order = [[int(lines[i].split()[j]) - 1 for j in range(nb_machines)]
                     for i in range(4 + nb_scenarios*(nb_jobs+1), 4 + nb_scenarios*(nb_jobs+1) + nb_jobs)]

    # Reorder processing times: processing_time[s][j][m] is the processing time of the
    # task of job j that is processed on machine m in the scenario s
    processing_time_per_scenario = [[[processing_times_in_processing_order_per_scenario[s][j][machine_order[j].index(m)]
                                      for m in range(nb_machines)]
                                     for j in range(nb_jobs)]
                                    for s in range(nb_scenarios)]

    # Trivial upper bound for the start times of the tasks
    max_start = max([sum(sum(processing_time_per_scenario[s][j])
                    for j in range(nb_jobs)) for s in range(nb_scenarios)])

    return nb_jobs, nb_machines, nb_scenarios, processing_time_per_scenario, machine_order, max_start


def main(instance_file, output_file, time_limit):
    nb_jobs, nb_machines, nb_scenarios, processing_time_per_scenario, machine_order, max_start = read_instance(
        instance_file)

    with localsolver.LocalSolver() as ls:
        #
        # Declare the optimization model
        #
        model = ls.model

        # Interval decisions: time range of each task
        # tasks[s][j][m] is the interval of time of the task of job j which is processed
        # on machine m in the scenario s
        tasks = [[[model.interval(0, max_start) for m in range(nb_machines)]
                  for j in range(nb_jobs)]
                 for s in range(nb_scenarios)]

        # Task duration constraints
        for s in range(nb_scenarios):
            for j in range(nb_jobs):
                for m in range(0, nb_machines):
                    model.constraint(model.length(tasks[s][j][m]) == processing_time_per_scenario[s][j][m])

        # Create a LocalSolver array in order to be able to access it with "at" operators
        task_array = model.array(tasks)

        # Precedence constraints between the tasks of a job
        for s in range(nb_scenarios):
            for j in range(nb_jobs):
                for k in range(nb_machines - 1):
                    model.constraint(
                        tasks[s][j][machine_order[j][k]] < tasks[s][j][machine_order[j][k + 1]])

        # Sequence of tasks on each machine
        jobs_order = [model.list(nb_jobs) for m in range(nb_machines)]

        for m in range(nb_machines):
            # Each job has a task scheduled on each machine
            sequence = jobs_order[m]
            model.constraint(model.eq(model.count(sequence), nb_jobs))

            # Disjunctive resource constraints between the tasks on a machine
            for s in range(nb_scenarios):
                sequence_lambda = model.lambda_function(
                    lambda i: model.lt(model.at(task_array, s, sequence[i], m),
                                       model.at(task_array, s, sequence[i + 1], m)))
                model.constraint(model.and_(model.range(0, nb_jobs - 1), sequence_lambda))

        # Minimize the maximum makespan: end of the last task of the last job
        # over all scenarios
        makespans = [model.max([model.end(tasks[s][j][machine_order[j][nb_machines - 1]]) for j in range(nb_jobs)])
                     for s in range(nb_scenarios)]
        max_makespan = model.max(makespans)
        model.minimize(max_makespan)

        model.close()

        # Parameterize the solver
        ls.param.time_limit = time_limit

        ls.solve()

        #
        # Write the solution in a file with the following format:
        # - for each machine, the job sequence
        #
        if output_file != None:
            final_jobs_order = [list(jobs_order[m].value) for m in range(nb_machines)]
            with open(output_file, "w") as f:
                print("Solution written in file ", output_file)
                for m in range(nb_machines):
                    for j in range(nb_jobs):
                        f.write(str(final_jobs_order[m][j]) + " ")
                    f.write("\n")


if __name__ == '__main__':
    if len(sys.argv) < 2:
        print("Usage: python stochastic_jobshop.py instance_file [output_file] [time_limit]")
        sys.exit(1)

    instance_file = sys.argv[1]
    output_file = sys.argv[2] if len(sys.argv) >= 3 else None
    time_limit = int(sys.argv[3]) if len(sys.argv) >= 4 else 60
    main(instance_file, output_file, time_limit)
Compilation / Execution (Windows)
cl /EHsc stochastic_jobshop.cpp -I%LS_HOME%\include /link %LS_HOME%\bin\localsolver125.lib
stochastic_jobshop instances\ft20_10.txt
Compilation / Execution (Linux)
g++ stochastic_jobshop.cpp -I/opt/localsolver_12_5/include -llocalsolver125 -lpthread -o stochastic_jobshop
./stochastic_jobshop instances/ft20_10.txt
#include "localsolver.h"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <limits>
#include <numeric>
#include <vector>

using namespace localsolver;
using namespace std;

class StochasticJobshop {
private:
    // Number of jobs
    int nbJobs;
    // Number of machines
    int nbMachines;
    // Number of scenarios
    int nbScenarios;
    // Processing order of machines for each job
    vector<vector<int>> machineOrder;
    // Processing time on each machine for each job (given in the machine order and for a given scenario)
    vector<vector<vector<int>>> processingTimePerScenario;
    // Trivial upper bound for the start times of the tasks
    int maxStart;

    // LocalSolver
    LocalSolver localsolver;
    // Decision variables: time range of each task
    vector<vector<vector<LSExpression>>> tasks;
    // Decision variables: sequence of tasks on each machine
    vector<LSExpression> jobsOrder;
    // Objective = minimize the maximum of all makespans
    LSExpression maxMakespan;

public:
    StochasticJobshop() : localsolver() {}

    void readInstance(const string& fileName) {

        ifstream infile;
        infile.exceptions(ifstream::failbit | ifstream::badbit);
        infile.open(fileName.c_str());

        infile.ignore(numeric_limits<streamsize>::max(), '\n');
        infile >> nbJobs;
        infile >> nbMachines;
        infile >> nbScenarios;
        infile.ignore(numeric_limits<streamsize>::max(), '\n');

        // Processing times for each job on each machine (given in the processing order)
        infile.ignore(numeric_limits<streamsize>::max(), '\n');
        vector<vector<vector<int>>> processingTimeInProcessingOrderPerScenario =
            vector<vector<vector<int>>>(nbScenarios, vector<vector<int>>(nbJobs, vector<int>(nbMachines)));
            
        for (int s = 0; s < nbScenarios; ++s) {
            for (int j = 0; j < nbJobs; ++j) {
                for (int m = 0; m < nbMachines; ++m) {
                    infile >> processingTimeInProcessingOrderPerScenario[s][j][m];
                }
            }
            infile.ignore(numeric_limits<streamsize>::max(), '\n');
        }

        // Processing order of machines for each job
        infile.ignore(numeric_limits<streamsize>::max(), '\n');
        infile.ignore(numeric_limits<streamsize>::max(), '\n');
        machineOrder.resize(nbJobs);
        for (int j = 0; j < nbJobs; ++j) {
            machineOrder[j].resize(nbMachines);
            for (int m = 0; m < nbMachines; ++m) {
                int x;
                infile >> x;
                machineOrder[j][m] = x - 1;
            }
        }

        // Reorder processing times: processingTimePerScenario[s][j][m] is the processing time of the
        // task of job j that is processed on machine m in scenario s
        for (int s = 0; s < nbScenarios; ++s) {
            processingTimePerScenario.resize(nbScenarios);
            for (int j = 0; j < nbJobs; ++j) {
                processingTimePerScenario[s].resize(nbJobs);
                for (int m = 0; m < nbMachines; ++m) {
                    processingTimePerScenario[s][j].resize(nbMachines);
                    vector<int>::iterator findM = find(machineOrder[j].begin(), machineOrder[j].end(), m);
                    unsigned int k = distance(machineOrder[j].begin(), findM);
                    processingTimePerScenario[s][j][m] = processingTimeInProcessingOrderPerScenario[s][j][k];
                }
            }
        }

        // Trivial upper bound for the start times of the tasks
        vector<int> maxStartPerScenario = vector<int>(nbScenarios);
        for (int s = 0; s < nbScenarios; ++s) {
            for (int j = 0; j < nbJobs; ++j) {
                maxStartPerScenario[s] +=
                    accumulate(processingTimePerScenario[s][j].begin(), processingTimePerScenario[s][j].end(), 0);
            }
        }
        maxStart = *max_element(maxStartPerScenario.begin(), maxStartPerScenario.end());
        infile.close();
    }
    
    void solve(int timeLimit) {
        // Declare the optimization model
        LSModel model = localsolver.getModel();

        // Interval decisions: time range of each task
        // tasks[s][j][m] is the interval of time of the task of job j which is 
        // processed on machine m in scenario s
        tasks.resize(nbScenarios);
        for (unsigned int s = 0; s < nbScenarios; ++s) {
            tasks[s].resize(nbJobs);
            for (unsigned int j = 0; j < nbJobs; ++j) {
                tasks[s][j].resize(nbMachines);
                for (unsigned int m = 0; m < nbMachines; ++m) {
                    tasks[s][j][m] = model.intervalVar(0, maxStart);

                    // Task duration constraints
                    model.constraint(model.length(tasks[s][j][m]) == processingTimePerScenario[s][j][m]);
                }
            }
        }

        // Create a LocalSolver array in order to be able to access it with "at" operators
        vector<LSExpression> taskArray = vector<LSExpression>(nbScenarios);
        for (int s = 0; s < nbScenarios; ++s) {
            taskArray[s] = model.array();
            for (int j = 0; j < nbJobs; ++j) {
                taskArray[s].addOperand(model.array(tasks[s][j].begin(), tasks[s][j].end()));
            }
        }

        // Precedence constraints between the tasks of a job
        for (int s = 0; s < nbScenarios; ++s) {
            for (int j = 0; j < nbJobs; ++j) {
                for (int k = 0; k < nbMachines - 1; ++k) {
                    model.constraint(tasks[s][j][machineOrder[j][k]] < tasks[s][j][machineOrder[j][k + 1]]);
                }
            }
        }

        // Sequence of tasks on each machine
        jobsOrder.resize(nbMachines);
        for (int m = 0; m < nbMachines; ++m) {
            jobsOrder[m] = model.listVar(nbJobs);
        }

        for (int m = 0; m < nbMachines; ++m) {
            // Each job has a task scheduled on each machine
            LSExpression sequence = jobsOrder[m];
            model.constraint(model.eq(model.count(sequence), nbJobs));

            // Disjunctive resource constraints between the tasks on a machine
            for (int s = 0; s < nbScenarios; ++s) {
                LSExpression sequenceLambda = model.createLambdaFunction([&](LSExpression i) {
                    return model.at(taskArray[s], sequence[i], m) < model.at(taskArray[s], sequence[i + 1], m);
                });
                model.constraint(model.and_(model.range(0, nbJobs - 1), sequenceLambda));
            }
        }

        // Minimize the maximum makespan: end of the last task of the last job
        // over all scenarios
        vector<LSExpression> makespans = vector<LSExpression>(nbScenarios);
        for (int s = 0; s < nbScenarios; ++s) {
            makespans[s] = model.max();
            for (int j = 0; j < nbJobs; ++j) {
                makespans[s].addOperand(model.end(tasks[s][j][machineOrder[j][nbMachines - 1]]));
            }
        }
        maxMakespan = model.max();
        for (int s = 0; s < nbScenarios; ++s) 
            maxMakespan.addOperand(makespans[s]);

        model.minimize(maxMakespan);
        model.close();

        // Parameterize the solver
        localsolver.getParam().setTimeLimit(timeLimit);

        localsolver.solve();
    }

    /* Write the solution in a file with the following format:
     *  - for each machine, the job sequence */
    void writeSolution(const string& fileName) {
        ofstream outfile;
        outfile.exceptions(ofstream::failbit | ofstream::badbit);
        outfile.open(fileName.c_str());
        cout << "Solution written in file " << fileName << endl;

        for (int m = 0; m < nbMachines; ++m) {
            LSCollection finalJobsOrder = jobsOrder[m].getCollectionValue();
            for (int j = 0; j < nbJobs; ++j) {
                outfile << finalJobsOrder.get(j) << " ";
            }
            outfile << endl;
        }
        outfile.close();
    }
};

int main(int argc, char** argv) {
    if (argc < 2) {
        cout << "Usage: stochastic_jobshop instanceFile [outputFile] [timeLimit]" << endl;
        exit(1);
    }

    const char* instanceFile = argv[1];
    const char* outputFile = argc > 2 ? argv[2] : NULL;
    const char* strTimeLimit = argc > 3 ? argv[3] : "60";

    StochasticJobshop model;
    try {
        model.readInstance(instanceFile);
        const int timeLimit = atoi(strTimeLimit);
        model.solve(timeLimit);
        if (outputFile != NULL)
            model.writeSolution(outputFile);
        return 0;
    } catch (const exception& e) {
        cerr << "An error occurred: " << e.what() << endl;
        return 1;
    }
}
Compilation / Execution (Windows)
copy %LS_HOME%\bin\localsolvernet.dll .
csc StochasticJobshop.cs /reference:localsolvernet.dll
StochasticJobshop instances\ft20_10.txt
using System;
using System.Linq;
using System.IO;
using localsolver;

public class StochasticJobshop : IDisposable
{
    // Number of jobs
    private int nbJobs;

    // Number of machines
    private int nbMachines;

    // Number of machines
    private int nbScenarios;

    // Processing order of machines for each job
    private int[,] machineOrder;

    // Processing time on each machine for each job (given in the machine order)
    private long[,,] processingTimePerScenario;

    // Trivial upper bound for the start times of the tasks
    private long maxStart;

    // LocalSolver
    private LocalSolver localsolver;

    // Decision variables: time range of each task
    private LSExpression[,,] tasks;

    // Decision variables: sequence of tasks on each machine
    private LSExpression[] jobsOrder;

    // Objective = minimize the maximum of all makespans
    private LSExpression maxMakespan;

    public StochasticJobshop()
    {
        localsolver = new LocalSolver();
    }

    public void ReadInstance(string fileName)
    {
        using (StreamReader input = new StreamReader(fileName))
        {
            input.ReadLine();
            string[] splitted = input.ReadLine().Split(' ');
            nbJobs = int.Parse(splitted[0]);
            nbMachines = int.Parse(splitted[1]);
            nbScenarios = int.Parse(splitted[2]);

            // Processing times for each job on each machine (given in the processing order)
            input.ReadLine();
            long[,,] processingTimeInProcessingOrderPerScenario = new long[
                nbScenarios,
                nbJobs,
                nbMachines
            ];
            for (int s = 0; s < nbScenarios; ++s)
            {
                for (int j = 0; j < nbJobs; ++j)
                {
                    splitted = input.ReadLine().Trim().Split(' ');
                    for (int m = 0; m < nbMachines; ++m)
                        processingTimeInProcessingOrderPerScenario[s, j, m] = long.Parse(
                            splitted[m]
                        );
                }
                input.ReadLine();
            }

            // Processing order of machines for each job
            input.ReadLine();
            machineOrder = new int[nbJobs, nbMachines];
            for (int j = 0; j < nbJobs; ++j)
            {
                splitted = input.ReadLine().Trim().Split(' ');
                for (int m = 0; m < nbMachines; ++m)
                    machineOrder[j, m] = int.Parse(splitted[m]) - 1;
            }

            // Reorder processing times: processingTimePerScenario[s, j, m] is the processing time of the
            // task of job j that is processed on machine m in scenario s
            processingTimePerScenario = new long[nbScenarios, nbJobs, nbMachines];
            // Trivial upper bound for the start times of the tasks
            long[] maxStartPerScenario = new long[nbScenarios];
            for (int s = 0; s < nbScenarios; ++s)
            {
                for (int j = 0; j < nbJobs; ++j)
                {
                    for (int m = 0; m < nbMachines; ++m)
                    {
                        int machineIndex = nbMachines;
                        for (int k = 0; k < nbMachines; ++k)
                        {
                            if (machineOrder[j, k] == m)
                            {
                                machineIndex = k;
                                break;
                            }
                        }
                        processingTimePerScenario[s, j, m] =
                            processingTimeInProcessingOrderPerScenario[s, j, machineIndex];
                        maxStartPerScenario[s] += processingTimePerScenario[s, j, m];
                    }
                }
            }
            maxStart = maxStartPerScenario.Max();
        }
    }

    public void Dispose()
    {
        localsolver.Dispose();
    }

    public void Solve(int timeLimit)
    {
        // Declare the optimization model
        LSModel model = localsolver.GetModel();

        // Interval decisions: time range of each task
        // tasks[s][j][m] is the interval of time of the task of job j which is processed on machine m
        // in scenario s
        tasks = new LSExpression[nbScenarios, nbJobs, nbMachines];

        for (int s = 0; s < nbScenarios; ++s)
        {
            for (int j = 0; j < nbJobs; ++j)
            {
                for (int m = 0; m < nbMachines; ++m)
                {
                    tasks[s, j, m] = model.Interval(0, maxStart);

                    // Task duration constraints
                    model.Constraint(
                        model.Length(tasks[s, j, m]) == processingTimePerScenario[s, j, m]
                    );
                }
            }
        }

        // Create a LocalSolver array in order to be able to access it with "at" operators
        LSExpression taskArray = model.Array(tasks);

        // Precedence constraints between the tasks of a job
        for (int s = 0; s < nbScenarios; ++s)
        {
            for (int j = 0; j < nbJobs; ++j)
            {
                for (int k = 0; k < nbMachines - 1; ++k)
                {
                    model.Constraint(
                        tasks[s, j, machineOrder[j, k]] < tasks[s, j, machineOrder[j, k + 1]]
                    );
                }
            }
        }

        // Sequence of tasks on each machine
        jobsOrder = new LSExpression[nbMachines];
        for (int m = 0; m < nbMachines; ++m)
            jobsOrder[m] = model.List(nbJobs);

        for (int m = 0; m < nbMachines; ++m)
        {
            // Each job has a task scheduled on each machine
            LSExpression sequence = jobsOrder[m];
            model.Constraint(model.Count(sequence) == nbJobs);

            // Disjunctive resource constraints between the tasks on a machine
            for (int s = 0; s < nbScenarios; ++s)
            {
                LSExpression sequenceLambda = model.LambdaFunction(
                    i => taskArray[s][sequence[i], m] < taskArray[s][sequence[i + 1], m]
                );
                model.Constraint(model.And(model.Range(0, nbJobs - 1), sequenceLambda));
            }
        }

        // Minimize the maximum makespan: end of the last task of the last job
        // over all scenarios
        LSExpression[] makespans = new LSExpression[nbScenarios];
        for (int s = 0; s < nbScenarios; ++s)
        {
            makespans[s] = model.Max();
            for (int j = 0; j < nbJobs; ++j)
            {
                makespans[s].AddOperand(model.End(tasks[s, j, machineOrder[j, nbMachines - 1]]));
            }
        }

        maxMakespan = model.Max();
        for (int s = 0; s < nbScenarios; ++s)
            maxMakespan.AddOperand(makespans[s]);

        model.Minimize(maxMakespan);
        model.Close();

        // Parameterize the solver
        localsolver.GetParam().SetTimeLimit(timeLimit);

        localsolver.Solve();
    }

    /* Write the solution in a file with the following format:
     *  - for each machine, the job sequence */
    public void WriteSolution(string fileName)
    {
        using (StreamWriter output = new StreamWriter(fileName))
        {
            Console.WriteLine("Solution written in file " + fileName);
            for (int m = 0; m < nbMachines; ++m)
            {
                LSCollection finalJobsOrder = jobsOrder[m].GetCollectionValue();
                for (int i = 0; i < nbJobs; ++i)
                {
                    int j = (int)finalJobsOrder.Get(i);
                    output.Write(j + " ");
                }
                output.WriteLine();
            }
        }
    }

    public static void Main(string[] args)
    {
        if (args.Length < 1)
        {
            Console.WriteLine("Usage: StochasticJobshop instanceFile [outputFile] [timeLimit]");
            System.Environment.Exit(1);
        }

        string instanceFile = args[0];
        string outputFile = args.Length > 1 ? args[1] : null;
        string strTimeLimit = args.Length > 2 ? args[2] : "60";

        using (StochasticJobshop model = new StochasticJobshop())
        {
            model.ReadInstance(instanceFile);
            model.Solve(int.Parse(strTimeLimit));
            if (outputFile != null)
                model.WriteSolution(outputFile);
        }
    }
}
Compilation / Execution (Windows)
javac StochasticJobshop.java -cp %LS_HOME%\bin\localsolver.jar
java -cp %LS_HOME%\bin\localsolver.jar;. StochasticJobshop instances\ft20_10.txt
Compilation / Execution (Linux)
javac StochasticJobshop.java -cp /opt/localsolver_12_5/bin/localsolver.jar
java -cp /opt/localsolver_12_5/bin/localsolver.jar:. StochasticJobshop instances/ft20_10.txt
import java.util.*;
import java.io.*;
import localsolver.*;

public class StochasticJobshop {
    // Number of jobs
    private int nbJobs;
    // Number of machines
    private int nbMachines;
    // Number of scenarios
    private int nbScenarios;
    // Processing time on each machine for each job (given in the machine order)
    private long[][][] processingTimePerScenario;
    // Processing order of machines for each job
    private int[][] machineOrder;
    // Trivial upper bound for the start times of the tasks
    private long maxStart;

    // LocalSolver
    final LocalSolver localsolver;
    // Decision variables: time range of each task
    private LSExpression[][][] tasks;
    // Decision variables: sequence of tasks on each machine
    private LSExpression[] jobsOrder;
    // Objective = minimize the maximum of all makespans
    private LSExpression maxMakespan;

    public StochasticJobshop(LocalSolver localsolver) throws IOException {
        this.localsolver = localsolver;
    }

    public void readInstance(String fileName) throws IOException {
        try (Scanner input = new Scanner(new File(fileName))) {
            input.nextLine();
            nbJobs = input.nextInt();
            nbMachines = input.nextInt();
            nbScenarios = input.nextInt();

            input.nextLine();
            input.nextLine();
            // Processing times for each job on each machine (given in the processing order)
            long[][][] processingTimesInProcessingOrderPerScenario = new long[nbScenarios][nbJobs][nbMachines];
            for (int s = 0; s < nbScenarios; ++s) {
                for (int j = 0; j < nbJobs; ++j) {
                    for (int m = 0; m < nbMachines; ++m) {
                        processingTimesInProcessingOrderPerScenario[s][j][m] = input.nextInt();
                    }
                }
                input.nextLine();
            }
            // Processing order of machines for each job
            input.nextLine();
            input.nextLine();
            machineOrder = new int[nbJobs][nbMachines];
            for (int j = 0; j < nbJobs; ++j) {
                for (int m = 0; m < nbMachines; ++m) {
                    machineOrder[j][m] = input.nextInt() - 1;
                }
            }

            // Reorder processing times: processingTimePerScenario[s][j][m] is the
            // processing time of the task of job j that is processed on machine m for a
            // given scenario s
            processingTimePerScenario = new long[nbScenarios][nbJobs][nbMachines];

            // Trivial upper bound for the start times of the tasks
            long[] maxStartPerScenario = new long[nbScenarios];
            for (int s = 0; s < nbScenarios; ++s) {
                maxStartPerScenario[s] = 0;
                for (int j = 0; j < nbJobs; ++j) {
                    for (int m = 0; m < nbMachines; ++m) {
                        int machineIndex = nbMachines;
                        for (int k = 0; k < nbMachines; ++k) {
                            if (machineOrder[j][k] == m) {
                                machineIndex = k;
                                break;
                            }
                        }
                        processingTimePerScenario[s][j][m] = processingTimesInProcessingOrderPerScenario[s][j][machineIndex];
                        maxStartPerScenario[s] += processingTimePerScenario[s][j][m];
                    }
                }
            }
            maxStart = Arrays.stream(maxStartPerScenario).max().getAsLong();
        }
    }

    public void solve(int timeLimit) {
        // Declare the optimization model
        LSModel model = localsolver.getModel();

        // Interval decisions: time range of each task tasks[s][j][m] is the interval of
        // time of the task of job j which is processed on machine m in the scenario s
        tasks = new LSExpression[nbScenarios][nbJobs][nbMachines];
        for (int j = 0; j < nbJobs; ++j) {
            for (int m = 0; m < nbMachines; ++m) {
                for (int s = 0; s < nbScenarios; ++s) {
                    tasks[s][j][m] = model.intervalVar(0, maxStart);
                    // Task duration constraints
                    model.constraint(model.eq(model.length(tasks[s][j][m]), processingTimePerScenario[s][j][m]));
                }
            }
        }

        // Create a LocalSolver array in order to be able to access it with "at"
        // operators
        LSExpression taskArray = model.array(tasks);

        // Precedence constraints between the tasks of a job
        for (int s = 0; s < nbScenarios; ++s) {
            for (int j = 0; j < nbJobs; ++j) {
                for (int k = 0; k < nbMachines - 1; ++k) {
                    model.constraint(model.lt(tasks[s][j][machineOrder[j][k]], tasks[s][j][machineOrder[j][k + 1]]));
                }
            }
        }

        // Sequence of tasks on each machine
        jobsOrder = new LSExpression[nbMachines];
        for (int m = 0; m < nbMachines; ++m) {
            jobsOrder[m] = model.listVar(nbJobs);
        }

        for (int m = 0; m < nbMachines; ++m) {
            // Each job has a task scheduled on each machine
            LSExpression sequence = jobsOrder[m];
            model.constraint(model.eq(model.count(sequence), nbJobs));

            // Disjunctive resource constraints between the tasks on a machine
            for (int s = 0; s < nbScenarios; ++s) {
                LSExpression mExpr = model.createConstant(m);
                LSExpression sExpr = model.createConstant(s);
                LSExpression sequenceLambda = model
                        .lambdaFunction(i -> model.lt(model.at(taskArray, sExpr, model.at(sequence, i), mExpr),
                                model.at(taskArray, sExpr, model.at(sequence, model.sum(i, 1)), mExpr)));
                model.constraint(model.and(model.range(0, nbJobs - 1), sequenceLambda));
            }
        }

        // Minimize the maximum makespan: end of the last task of the last job
        // over all scenarios
        LSExpression[] makespans = new LSExpression[nbScenarios];
        for (int s = 0; s < nbScenarios; ++s) {
            makespans[s] = model.max();
            for (int j = 0; j < nbJobs; ++j) {
                makespans[s].addOperand(model.end(tasks[s][j][machineOrder[j][nbMachines - 1]]));
            }
        }

        maxMakespan = model.max();
        for (int s = 0; s < nbScenarios; ++s) {
            maxMakespan.addOperand(makespans[s]);
        }

        model.minimize(maxMakespan);

        model.close();

        // Parameterize the solver
        localsolver.getParam().setTimeLimit(timeLimit);

        localsolver.solve();
    }

    /*
     * Write the solution in a file with the following format:
     * - for each machine, the job sequence
     */
    public void writeSolution(String fileName) throws IOException {
        try (PrintWriter output = new PrintWriter(fileName)) {
            System.out.println("Solution written in file " + fileName);

            for (int m = 0; m < nbMachines; ++m) {
                LSCollection finalJobsOrder = jobsOrder[m].getCollectionValue();
                for (int i = 0; i < nbJobs; ++i) {
                    int j = Math.toIntExact(finalJobsOrder.get(i));
                    output.write(j + " ");
                }
                output.write("\n");
            }
        }
    }

    public static void main(String[] args) {
        if (args.length < 1) {
            System.out.println("Usage: java StochasticJobshop instanceFile [outputFile] [timeLimit]");
            System.exit(1);
        }

        String instanceFile = args[0];
        String outputFile = args.length > 1 ? args[1] : null;
        String strTimeLimit = args.length > 2 ? args[2] : "60";

        try (LocalSolver localsolver = new LocalSolver()) {
            StochasticJobshop model = new StochasticJobshop(localsolver);
            model.readInstance(instanceFile);
            model.solve(Integer.parseInt(strTimeLimit));
            if (outputFile != null) {
                model.writeSolution(outputFile);
            }
        } catch (Exception ex) {
            System.err.println(ex);
            ex.printStackTrace();
            System.exit(1);
        }
    }
}