Open Shop Scheduling Problem¶
Principles learned¶
Use lambda functions in standard methods
Use variadic operators
Use interval decision variables
Order interval decision variables by pairing them up with a list variable
Problem¶
In the open shop scheduling problem, a set of jobs has to be processed on every machine of the shop. Each job consists in an unordered sequence of tasks (called activities), each representing the processing of the job on one of the machines. Each job has one activity per machine, and cannot start an activity while another activity of the job is running. Each activity has a given processing time and each machine can only process one activity at a time.
The goal is to find a sequence of jobs that minimizes the makespan: the time when all jobs have been processed.
Download the exampleData¶
The instances provided are from Taillard. The format of the data files is as follows:
First line: number of jobs, number of machines, seed used to generate the instance, upper and lower bound previously found.
For each job: the processing time of each activity on its assigned machine
For each job: the machine id assigned to each activity
Program¶
We use interval decision variables to model the time ranges of the activities. The length of the interval is constrained by the processing time of each activity.
In addition to the interval decisions representing the time ranges of the activities, we also use list decision variables. As in the Jobshop example, a list models the ordering of activities within a machine. We constrain all the jobs to be processed on each machine thanks to the “count” operator.
The disjunctive resource constraints — each machine can only process one activity at a time — can be reformulated as follows: given a sequence of jobs, the activity corresponding to any job must be placed after the activity corresponding to the previous job.
To model these constraints, we pair up the interval decisions (the time ranges) with the list decisions (the job orderings). We write a lambda function, expressing the relationship between the two consecutive activities. This function is used within an “and” operator over all activities processed by a machine.
To model the disjunctive activity constraints - each job can only have one running activity at a time - we use the same strategy: a list models the ordering of activities within a job. We constrain all the activities to be processed thanks to the “count” operator. Similarly to the disjunctive resource constraints, we use an “and” operator over all machines for a given job. Hence, for a given job only one activity is executed at a time.
The makespan to minimize is the time when all the activities have been processed; the maximum end time for all machines.
If you are interested in more specific cases, where the activities are ordered on each machine, you can now study our jobshop model or our flowshop model.
- Execution:
- localsolver openshop.lsp inFileName=instances/tai2020_5.txt [lsTimeLimit=] [solFileName=]
/********** Openshop **********/
use io;
/* Read instance data. The input files follow the "Taillard" format */
function input() {
local usage = "Usage: localsolver openshop.lsp inFileName=instanceFile "
+ "[outFileName=outputFile] [lsTimeLimit=timeLimit]";
if (inFileName == nil) throw usage;
inFile = io.openRead(inFileName);
inFile.readln();
nbJobs = inFile.readInt();
nbMachines = inFile.readInt();
inFile.readln();
inFile.readln();
// Processing times for each job on each machine
// (given in the task order, the processing order is a decision variable)
processingTimesActivityOrder[j in 0...nbJobs][m in 0...nbMachines] = inFile.readInt();
inFile.readln();
// Reorder processing times: processingTime[j][m] is the processing time of the
// task of job j that is processed on machine m
for [j in 0...nbJobs][k in 0...nbMachines] {
local m = inFile.readInt() - 1;
processingTimes[j][m] = processingTimesActivityOrder[j][k];
}
inFile.close();
maxStart = sum[j in 0...nbJobs][m in 0...nbMachines](processingTimes[j][m]);
}
/* Declare the optimization model */
function model() {
// Interval decisions: time range of jobs on each machine
// tasks[j][m] is the interval of time of the task of job j
// which is processed on machine m
tasks[j in 0...nbJobs][m in 0...nbMachines] <- interval(0, maxStart);
// Task duration constraints
for [j in 0...nbJobs][m in 0...nbMachines]
constraint length(tasks[j][m]) == processingTimes[j][m];
// List of the jobs on each machine
jobsOrder[m in 0...nbMachines] <- list(nbJobs);
for [m in 0...nbMachines] {
// Each job is scheduled on every machine
constraint count(jobsOrder[m]) == nbJobs;
// Every machine executes a single task at a time
constraint and(0...nbJobs - 1, i => tasks[jobsOrder[m][i]][m] < tasks[jobsOrder[m][i + 1]][m]);
}
// List of the machines for each job task
machinesOrder[j in 0...nbJobs] <- list(nbMachines);
for [j in 0...nbJobs] {
// Every task is scheduled on its corresponding machine
constraint count(machinesOrder[j]) == nbMachines;
// A job has a single task at a time
constraint and(0...nbMachines - 1, k => tasks[j][machinesOrder[j][k]] < tasks[j][machinesOrder[j][k + 1]]);
}
// Minimize the makespan: the end of the last task
makespan <- max[m in 0...nbMachines][j in 0...nbJobs](end(tasks[j][m]));
minimize makespan;
}
// Parametrize the solver
function param() {
if (lsTimeLimit == nil) lsTimeLimit = 5;
}
/* Write the solution in a file with the following format:
* - for each machine, the job sequence */
function output() {
if (outFileName == nil) return;
outFile = io.openWrite(outFileName);
for [m in 0...nbMachines] {
outFile.println[i in 0...nbJobs](jobsOrder[m].value[i] + " ");
}
println("Solution written in " + outFileName);
outFile.close();
}
- Execution (Windows)
- set PYTHONPATH=%LS_HOME%\bin\pythonpython openshop.py instances\tai2020_5.txt
- Execution (Linux)
- export PYTHONPATH=/opt/localsolver_12_5/bin/pythonpython openshop.py instances/tai2020_5.txt
import localsolver
import sys
def read_instance(filename):
# The input files follow the "Taillard" format
with open(filename, 'r') as f:
lines = f.readlines()
first_line = lines[1].split()
nb_jobs = int(first_line[0])
nb_machines = int(first_line[1])
# Processing times for each job on each machine
# (given in the task order, the processing order is a decision variable)
processing_times_task_order = [[int(proc_time) for proc_time in line.split()]
for line in lines[3:3 + nb_jobs]]
# Index of machines for each task
machine_index = [[int(machine_i) - 1 for machine_i in line.split()]
for line in lines[4 + nb_jobs:4 + 2 * nb_jobs]]
# Reorder processing times: processingTime[j][m] is the processing time of the
# task of job j that is processed on machine m
processing_times = [[processing_times_task_order[j][machine_index[j].index(m)]
for m in range(nb_machines)] for j in range(nb_jobs)]
# Trivial upper bound for the start time of tasks
max_start = sum(map(lambda processing_times_job: sum(processing_times_job), processing_times))
return nb_jobs, nb_machines, processing_times, max_start
def main(instance_file, output_file, time_limit):
nb_jobs, nb_machines, processing_times, max_start = read_instance(instance_file)
with localsolver.LocalSolver() as ls:
#
# Declare the optimization model
#
model = ls.model
# Interval decisions: time range of each task
# tasks[j][m] is the interval of time of the task of job j
# which is processed on machine m
tasks = [[model.interval(0, max_start) for _ in range(nb_machines)] for _ in range(nb_jobs)]
# Task duration constraints
for j in range(nb_jobs):
for m in range(0, nb_machines):
model.constraint(model.length(tasks[j][m]) == processing_times[j][m])
# Create a LocalSolver array in order to be able to access it with "at" operators
task_array = model.array(tasks)
# List of the jobs on each machine
jobs_order = [model.list(nb_jobs) for _ in range(nb_machines)]
for m in range(nb_machines):
# Each job is scheduled on every machine
model.constraint(model.eq(model.count(jobs_order[m]), nb_jobs))
# Every machine executes a single task at a time
sequence_lambda = model.lambda_function(lambda i:
model.at(task_array, jobs_order[m][i], m) < model.at(task_array, jobs_order[m][i + 1], m))
model.constraint(model.and_(model.range(0, nb_jobs - 1), sequence_lambda))
# List of the machines for each job
machines_order = [model.list(nb_machines) for _ in range(nb_jobs)]
for j in range(nb_jobs):
# Every task is scheduled on its corresponding machine
model.constraint(model.eq(model.count(machines_order[j]), nb_machines))
# A job has a single task at a time
sequence_lambda = model.lambda_function(lambda k:
model.at(task_array, j, machines_order[j][k]) < model.at(task_array, j, machines_order[j][k + 1]))
model.constraint(model.and_(model.range(0, nb_machines - 1), sequence_lambda))
# Minimize the makespan: the end of the last task
makespan = model.max([model.end(model.at(task_array, j, m))
for j in range(nb_jobs) for m in range(nb_machines)])
model.minimize(makespan)
model.close()
# Parametrize the solver
ls.param.time_limit = time_limit
ls.solve()
#
# Write the solution in a file with the following format:
# - for each machine, the job sequence
#
if output_file is not None:
with open(output_file, 'w') as f:
for m in range(nb_machines):
line = ""
for j in range(nb_jobs):
line += str(jobs_order[m].value[j]) + " "
f.write(line + "\n")
print("Solution written in file ", output_file)
if __name__ == '__main__':
if len(sys.argv) < 2:
print(
"Usage: python openshop.py instance_file [output_file] [time_limit]")
sys.exit(1)
instance_file = sys.argv[1]
output_file = sys.argv[2] if len(sys.argv) >= 3 else None
time_limit = int(sys.argv[3]) if len(sys.argv) >= 4 else 60
main(instance_file, output_file, time_limit)
- Compilation / Execution (Windows)
- cl /EHsc openshop.cpp -I%LS_HOME%\include /link %LS_HOME%\bin\localsolver125.libopenshop instances\tai2020_5.txt
- Compilation / Execution (Linux)
- g++ openshop.cpp -I/opt/localsolver_12_5/include -llocalsolver125 -lpthread -o openshop./openshop instances/tai2020_5.txt
#include "localsolver.h"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <limits>
#include <numeric>
#include <vector>
using namespace localsolver;
class Openshop {
private:
// Number of jobs
int nbJobs;
// Number of machines
int nbMachines;
// Processing time on each machine for each job task
std::vector<std::vector<int>> processingTime;
// Trivial upper bound for the start time of tasks
int maxStart;
// Localsolver
LocalSolver localsolver;
// Decision variables : time range of each task
std::vector<std::vector<LSExpression>> tasks;
// Decision variables : processing order of jobs for each machine
std::vector<LSExpression> jobsOrder;
// Decision variables : processing order of machines for each job
std::vector<LSExpression> machinesOrder;
// Objective = minimize the makespan: end of the last task of the last job
LSExpression makespan;
public:
Openshop() : localsolver() {}
// The input files follow the "Taillard" format
void readInstance(const std::string& instanceFile) {
std::ifstream infile;
infile.exceptions(std::ifstream::failbit | std::ifstream::badbit);
infile.open(instanceFile.c_str());
infile.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
infile >> nbJobs;
infile >> nbMachines;
infile.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
// Processing times for each job on each machine
// (given in the task order, the processing order is a decision variable)
infile.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
std::vector<std::vector<int>> processingTimesActivityOrder =
std::vector<std::vector<int>>(nbJobs, std::vector<int>(nbMachines));
for (int j = 0; j < nbJobs; ++j) {
for (int m = 0; m < nbMachines; ++m) {
infile >> processingTimesActivityOrder[j][m];
}
}
infile.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
// Index of machines for each task
infile.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
std::vector<std::vector<int>> machineIndex =
std::vector<std::vector<int>>(nbJobs, std::vector<int>(nbMachines));
for (int j = 0; j < nbJobs; ++j) {
for (int m = 0; m < nbMachines; ++m) {
int x;
infile >> x;
machineIndex[j][m] = x - 1;
}
}
infile.close();
// Reorder processing times: processingTime[j][m] is the processing time of the
// task of job j that is processed on machine m
processingTime.resize(nbJobs);
for (int j = 0; j < nbJobs; ++j) {
processingTime[j].resize(nbMachines);
for (int m = 0; m < nbMachines; ++m) {
std::vector<int>::iterator findM = std::find(machineIndex[j].begin(), machineIndex[j].end(), m);
int k = std::distance(machineIndex[j].begin(), findM);
processingTime[j][m] = processingTimesActivityOrder[j][k];
}
}
// Trivial upper bound for the start time of tasks
maxStart = 0;
for (int j = 0; j < nbJobs; ++j) {
maxStart += std::accumulate(processingTime[j].begin(), processingTime[j].end(), 0);
}
}
void solve(int timeLimit) {
// Declare the optimization model
LSModel model = localsolver.getModel();
// Interval decisions: time range of jobs on each machine
// tasks[j][m] is the interval of time of the task of job j
// which is processed on machine m
tasks.resize(nbJobs);
for (int j = 0; j < nbJobs; ++j) {
tasks[j].resize(nbMachines);
for (int m = 0; m < nbMachines; ++m) {
tasks[j][m] = model.intervalVar(0, maxStart);
// Task duration constraints
model.constraint(model.length(tasks[j][m]) == processingTime[j][m]);
}
}
// Create a LocalSolver array in order to be able to access it with "at" operators
LSExpression taskArray = model.array();
for (int j = 0; j < nbJobs; ++j) {
taskArray.addOperand(model.array(tasks[j].begin(), tasks[j].end()));
}
// Sequence of tasks on each machine
jobsOrder.resize(nbMachines);
for (int m = 0; m < nbMachines; ++m) {
jobsOrder[m] = model.listVar(nbJobs);
// Each job is scheduled on every machine
model.constraint(model.eq(model.count(jobsOrder[m]), nbJobs));
// Every machine executes a single task at a time
LSExpression sequenceLambda = model.createLambdaFunction([&](LSExpression i) {
return model.at(taskArray, jobsOrder[m][i], m) < model.at(taskArray, jobsOrder[m][i + 1], m);
});
model.constraint(model.and_(model.range(0, nbJobs - 1), sequenceLambda));
}
// Sequence of machines for each job
machinesOrder.resize(nbJobs);
for (int j = 0; j < nbJobs; ++j) {
machinesOrder[j] = model.listVar(nbMachines);
// Every task is scheduled on its corresponding machine
model.constraint(model.eq(model.count(machinesOrder[j]), nbMachines));
// A job has a single task at a time
LSExpression sequenceLambda = model.createLambdaFunction([&](LSExpression k) {
return model.at(taskArray, j, machinesOrder[j][k]) < model.at(taskArray, j, machinesOrder[j][k + 1]);
});
model.constraint(model.and_(model.range(0, nbMachines - 1), sequenceLambda));
}
// Minimize the makespan: the end of the last task
makespan = model.max();
for (int m = 0; m < nbMachines; ++m) {
for (int j = 0; j < nbJobs; ++j) {
makespan.addOperand(model.end(model.at(taskArray, j, m)));
}
}
model.minimize(makespan);
model.close();
// Parametrize the solver
localsolver.getParam().setTimeLimit(timeLimit);
localsolver.solve();
}
/* Write the solution in a file with the following format:
* - for each machine, the job sequence */
void writeSolution(const std::string& fileName) {
std::ofstream outfile(fileName.c_str());
if (!outfile.is_open()) {
std::cerr << "File " << fileName << " cannot be opened." << std::endl;
exit(1);
}
for (int m = 0; m < nbMachines; ++m) {
LSCollection finalJobsOrder = jobsOrder[m].getCollectionValue();
for (int j = 0; j < nbJobs; ++j) {
outfile << finalJobsOrder.get(j) << " ";
}
outfile << std::endl;
}
outfile.close();
std::cout << "Solution written in file " << fileName << std::endl;
}
};
int main(int argc, char** argv) {
if (argc < 2) {
std::cout << "Usage: openshop instanceFile [outputFile] [timeLimit]" << std::endl;
exit(1);
}
const char* instanceFile = argv[1];
const char* outputFile = argc > 2 ? argv[2] : nullptr;
const char* strTimeLimit = argc > 3 ? argv[3] : "60";
Openshop model;
try {
model.readInstance(instanceFile);
const int timeLimit = atoi(strTimeLimit);
model.solve(timeLimit);
if (outputFile != nullptr)
model.writeSolution(outputFile);
return 0;
} catch (const std::exception& e) {
std::cerr << "An error occured: " << e.what() << std::endl;
return 1;
}
}
- Compilation / Execution (Windows)
- copy %LS_HOME%\bin\localsolvernet.dll .csc Openshop.cs /reference:localsolvernet.dllOpenshop instances\tai2020_5.txt
using System;
using System.IO;
using localsolver;
public class Openshop : IDisposable
{
// Number of jobs
private int nbJobs;
// Number of machines
private int nbMachines;
// Processing time on each machine for each job task
private long[,] processingTime;
// Trivial upper bound for the start times of the tasks
private long maxStart;
// LocalSolver
private LocalSolver localsolver;
// Decision variables: time range of each task
private LSExpression[,] tasks;
// Decision variables : processing order of jobs for each machine
private LSExpression[] jobsOrder;
// Decision variables : processing order of machines for each jobs
private LSExpression[] machinesOrder;
// Objective = minimize the makespan: end of the last task of the last job
private LSExpression makespan;
public Openshop()
{
localsolver = new LocalSolver();
}
// The input files follow the "Taillard" format
public void ReadInstance(string fileName)
{
using (StreamReader input = new StreamReader(fileName))
{
input.ReadLine();
string[] splitted = input.ReadLine().Split(' ');
nbJobs = int.Parse(splitted[0]);
nbMachines = int.Parse(splitted[1]);
// Processing times for each job on each machine
// (given in the task order, the processing order is a decision variable)
input.ReadLine();
long[,] processingTimesActivityOrder = new long[nbJobs, nbMachines];
for (int j = 0; j < nbJobs; ++j)
{
splitted = input.ReadLine().Trim().Split(' ');
for (int m = 0; m < nbMachines; ++m)
processingTimesActivityOrder[j, m] = long.Parse(splitted[m]);
}
// Index of machines for each task
input.ReadLine();
int[,] machineIndexes = new int[nbJobs, nbMachines];
for (int j = 0; j < nbJobs; ++j)
{
splitted = input.ReadLine().Trim().Split(' ');
for (int m = 0; m < nbMachines; ++m)
machineIndexes[j, m] = int.Parse(splitted[m]) - 1;
}
// Reorder processing times: processingTime[j, m] is the processing time of the
// task of job j that is processed on machine m
processingTime = new long[nbJobs, nbMachines];
// Trivial upper bound for the start times of the tasks
maxStart = 0;
for (int j = 0; j < nbJobs; ++j)
{
for (int m = 0; m < nbMachines; ++m)
{
int machineIndex = nbMachines;
for (int k = 0; k < nbMachines; ++k)
{
if (machineIndexes[j, k] == m)
{
machineIndex = k;
break;
}
}
processingTime[j, m] = processingTimesActivityOrder[j, machineIndex];
maxStart += processingTime[j, m];
}
}
}
}
public void Dispose()
{
localsolver.Dispose();
}
public void Solve(int timeLimit)
{
// Declare the optimization model
LSModel model = localsolver.GetModel();
// Interval decisions: time range of jobs on each machine
// tasks[j][m] is the interval of time of the task of job j
// which is processed on machine m
tasks = new LSExpression[nbJobs, nbMachines];
for (int j = 0; j < nbJobs; ++j)
{
for (int m = 0; m < nbMachines; ++m)
{
tasks[j, m] = model.Interval(0, maxStart);
// Task duration constraints
model.Constraint(model.Length(tasks[j, m]) == processingTime[j, m]);
}
}
// Create a LocalSolver array in order to be able to access it with "at" operators
LSExpression taskArray = model.Array(tasks);
// Sequence of tasks on each machine
jobsOrder = new LSExpression[nbMachines];
for (int m = 0; m < nbMachines; ++m)
{
jobsOrder[m] = model.List(nbJobs);
// Each job has a task scheduled on each machine
LSExpression sequence = jobsOrder[m];
model.Constraint(model.Count(sequence) == nbJobs);
// Every machine executes a single task at a time
LSExpression sequenceLambda = model.LambdaFunction(
i => taskArray[sequence[i], m] < taskArray[sequence[i + 1], m]
);
model.Constraint(model.And(model.Range(0, nbJobs - 1), sequenceLambda));
}
// Sequence of tasks on each machine
machinesOrder = new LSExpression[nbJobs];
for (int j = 0; j < nbJobs; ++j)
{
machinesOrder[j] = model.List(nbMachines);
LSExpression sequence = machinesOrder[j];
// Every task is scheduled on its corresponding machine
model.Constraint(model.Count(sequence) == nbMachines);
// A job has a single task at a time
LSExpression sequenceLambda = model.LambdaFunction(
k => taskArray[j, sequence[k]] < taskArray[j, sequence[k + 1]]
);
model.Constraint(model.And(model.Range(0, nbMachines - 1), sequenceLambda));
}
// Minimize the makespan: end of the last task of the last job
makespan = model.Max();
for (int j = 0; j < nbJobs; ++j)
{
for (int m = 0; m < nbMachines; ++m)
{
makespan.AddOperand(model.End(tasks[j, m]));
}
}
model.Minimize(makespan);
model.Close();
// Parameterize the solver
localsolver.GetParam().SetTimeLimit(timeLimit);
localsolver.Solve();
}
/* Write the solution in a file with the following format:
* - for each machine, the job sequence */
public void WriteSolution(string fileName)
{
using (StreamWriter output = new StreamWriter(fileName))
{
for (int m = 0; m < nbMachines; ++m)
{
LSCollection finalJobsOrder = jobsOrder[m].GetCollectionValue();
for (int i = 0; i < nbJobs; ++i)
{
int j = (int)finalJobsOrder.Get(i);
output.Write(j + " ");
}
output.WriteLine();
}
}
Console.WriteLine("Solution written in file " + fileName);
}
public static void Main(string[] args)
{
if (args.Length < 1)
{
Console.WriteLine("Usage: Openshop instanceFile [outputFile] [timeLimit]");
System.Environment.Exit(1);
}
string instanceFile = args[0];
string outputFile = args.Length > 1 ? args[1] : null;
string strTimeLimit = args.Length > 2 ? args[2] : "60";
using (Openshop model = new Openshop())
{
model.ReadInstance(instanceFile);
model.Solve(int.Parse(strTimeLimit));
if (outputFile != null)
model.WriteSolution(outputFile);
}
}
}
- Compilation / Execution (Windows)
- javac Openshop.java -cp %LS_HOME%\bin\localsolver.jarjava -cp %LS_HOME%\bin\localsolver.jar;. Openshop instances\tai2020_5.txt
- Compilation / Execution (Linux)
- javac Openshop.java -cp /opt/localsolver_12_5/bin/localsolver.jarjava -cp /opt/localsolver_12_5/bin/localsolver.jar:. Openshop instances/tai2020_5.txt
import java.util.*;
import java.io.*;
import localsolver.*;
public class Openshop {
// Number of jobs
private int nbJobs;
// Number of machines
private int nbMachines;
// Processing time on each machine for each job task
private long[][] processingTime;
// Trivial upper bound for the start times of the tasks
private long maxStart;
// LocalSolver
final LocalSolver localsolver;
// Decision variables: time range of each task
private LSExpression[][] tasks;
// Decision variables : processing order of jobs for each machine
private LSExpression[] jobsOrder;
// Decision variables : processing order of machines for each job
private LSExpression[] machinesOrder;
// Objective = minimize the makespan: end of the last task of the last job
private LSExpression makespan;
public Openshop(LocalSolver localsolver) throws IOException {
this.localsolver = localsolver;
}
// The input files follow the "Taillard" format
public void readInstance(String fileName) throws IOException {
try (Scanner input = new Scanner(new File(fileName))) {
input.nextLine();
nbJobs = input.nextInt();
nbMachines = input.nextInt();
input.nextLine();
input.nextLine();
// Processing times for each job on each machine
// (given in the task order, the processing order is a decision variable)
long[][] processingTimesActivityOrder = new long[nbJobs][nbMachines];
for (int j = 0; j < nbJobs; ++j) {
for (int m = 0; m < nbMachines; ++m) {
processingTimesActivityOrder[j][m] = input.nextInt();
}
}
// Index of machines for each task
input.nextLine();
input.nextLine();
int[][] machineIndexes = new int[nbJobs][nbMachines];
for (int j = 0; j < nbJobs; ++j) {
for (int m = 0; m < nbMachines; ++m) {
machineIndexes[j][m] = input.nextInt() - 1;
}
}
// Reorder processing times: processingTime[j][m] is the processing time of the
// task of job j that is processed on machine m
processingTime = new long[nbJobs][nbMachines];
// Trivial upper bound for the start times of the tasks
maxStart = 0;
for (int j = 0; j < nbJobs; ++j) {
for (int m = 0; m < nbMachines; ++m) {
int machineIndex = nbMachines;
for (int k = 0; k < nbMachines; ++k) {
if (machineIndexes[j][k] == m) {
machineIndex = k;
break;
}
}
processingTime[j][m] = processingTimesActivityOrder[j][machineIndex];
maxStart += processingTime[j][m];
}
}
}
}
public void solve(int timeLimit) {
// Declare the optimization model
LSModel model = localsolver.getModel();
// Interval decisions: time range of jobs on each machine
// tasks[j][m] is the interval of time of the task of job j
// which is processed on machine m
tasks = new LSExpression[nbJobs][nbMachines];
for (int j = 0; j < nbJobs; ++j) {
for (int m = 0; m < nbMachines; ++m) {
tasks[j][m] = model.intervalVar(0, maxStart);
// Task duration constraints
model.constraint(model.eq(model.length(tasks[j][m]), processingTime[j][m]));
}
}
// Create a LocalSolver array in order to be able to access it with "at"
// operators
LSExpression taskArray = model.array(tasks);
// Sequence of tasks on each machine
jobsOrder = new LSExpression[nbMachines];
for (int m = 0; m < nbMachines; ++m) {
jobsOrder[m] = model.listVar(nbJobs);
LSExpression sequence = jobsOrder[m];
// Each job has a task scheduled on each machine
model.constraint(model.eq(model.count(sequence), nbJobs));
// Every machine executes a single task at a time
LSExpression mExpr = model.createConstant(m);
LSExpression sequenceLambda = model
.lambdaFunction(i -> model.lt(model.at(taskArray, model.at(sequence, i), mExpr),
model.at(taskArray, model.at(sequence, model.sum(i, 1)), mExpr)));
model.constraint(model.and(model.range(0, nbJobs - 1), sequenceLambda));
}
// Sequence of machines for each job
machinesOrder = new LSExpression[nbJobs];
for (int j = 0; j < nbJobs; ++j) {
machinesOrder[j] = model.listVar(nbMachines);
LSExpression sequence = machinesOrder[j];
// Every task is scheduled on its corresponding machine
model.constraint(model.eq(model.count(sequence), nbMachines));
// A job has a single task at a time
LSExpression jExpr = model.createConstant(j);
LSExpression sequenceLambda = model
.lambdaFunction(k -> model.lt(model.at(taskArray, jExpr, model.at(sequence, k)),
model.at(taskArray, jExpr, model.at(sequence, model.sum(k, 1)))));
model.constraint(model.and(model.range(0, nbMachines - 1), sequenceLambda));
}
// Minimize the makespan: end of the last task
makespan = model.max();
for (int m = 0; m < nbMachines; ++m) {
LSExpression mExpr = model.createConstant(m);
for (int j = 0; j < nbJobs; ++j) {
LSExpression jExpr = model.createConstant(j);
makespan.addOperand(model.end(model.at(taskArray, jExpr, mExpr)));
}
}
model.minimize(makespan);
model.close();
// Parameterize the solver
localsolver.getParam().setTimeLimit(timeLimit);
localsolver.solve();
}
/*
* Write the solution in a file with the following format:
* - for each machine, the job sequence
*/
public void writeSolution(String fileName) throws IOException {
try (PrintWriter output = new PrintWriter(fileName)) {
for (int m = 0; m < nbMachines; ++m) {
LSCollection finalJobsOrder = jobsOrder[m].getCollectionValue();
for (int i = 0; i < nbJobs; ++i) {
int j = Math.toIntExact(finalJobsOrder.get(i));
output.write(j + " ");
}
output.write("\n");
}
}
System.out.println("Solution written in file " + fileName);
}
public static void main(String[] args) {
if (args.length < 1) {
System.out.println("Usage: java Openshop instanceFile [outputFile] [timeLimit]");
System.exit(1);
}
String instanceFile = args[0];
String outputFile = args.length > 1 ? args[1] : null;
String strTimeLimit = args.length > 2 ? args[2] : "60";
try (LocalSolver localsolver = new LocalSolver()) {
Openshop model = new Openshop(localsolver);
model.readInstance(instanceFile);
model.solve(Integer.parseInt(strTimeLimit));
if (outputFile != null) {
model.writeSolution(outputFile);
}
} catch (Exception ex) {
System.err.println(ex);
ex.printStackTrace();
System.exit(1);
}
}
}