This page is for an old version of Hexaly Optimizer. We recommend that you update your version and read the documentation for the latest stable release.

Split Delivery Vehicle Routing (SDVRP)

Principles learned

  • Add multiple list decision variables

  • Add a cover constraint

  • Combine list and float decision variables

  • Define a sequence of expressions

Problem

../_images/sdvrp.svg

In the split delivery vehicle routing problem (SDVRP), a fleet of delivery vehicles with uniform capacity must service customers with known demand for a single commodity. The vehicles start and end their routes at a common depot. Each customer can be served by multiple vehicles. A sequence of customers is assigned to each truck of the fleet. The objective is to minimize the total distance traveled by the trucks while all customers are served at least their demand and the total demand served by each truck does not exceed its own capacity.

Download the example


Data

The instances provided were introduced by Belenguer et at. instances and use the format of the DIMACS challenge.

The format of the data files is as follows:

  • The first line contains the number of customers and the capacity Q of each truck

  • The second line contains the demand of the customers

  • The rest of the lines represents the coordinates of the warehouse followed by the coordinates of the customers

Program

This LocalSolver model is a relaxation of the CVRP model. We refer the reader to this model for the routing aspect of the problem. In the split delivery routing problem, it’s no longer required to deliver customer demand by a single truck, meaning that the demand can be splitted and served by different trucks. Dror and Trudeau (1989) . showed that important cost savings can be obtained using split deliveries compared to customer single delivery.

While in the CVRP model the “partition” operator operator is used to ensure that each customer is visited exactly once, here we use the “cover” operator to ensure that all customers must be visited at least once, without any constraint on the number of trucks that visits each customer.

The quantity delievered by the truck k to the customer i if visited is quantity[k][i]. The total quantity delivered by each truck is computed thanks to the sum operator over all customers visited by a truck. This quantity is constrained to be lower than the truck capacity.

The quantity delivered to a customer is computed by summing the quantity delivered by all the trucks visiting this customer. This quantity is constrained to satisfy the customer demand.

Execution:
localsolver sdvrp.lsp inFileName=instances/S51D4.sd [lsTimeLimit=] [solFileName=]
use io;

/* Read instance data */
function input() {
    usage = "Usage: localsolver sdvrp.lsp " + 
            "inFileName=inputFile [solFileName=outputFile] [lsTimeLimit=timeLimit]";
    
    if (inFileName == nil) throw usage;
    readInputSdvrp();
    
    // Compute distance matrix
    computeDistanceMatrix();
}

/* Declare the optimization model */
function model () {
    // Sequence of customers visited by each truck
    customersSequences[k in 0..nbTrucks-1] <- list(nbCustomers);
    
    // All customers must be visited at least by one truck
    constraint cover[k in 0..nbTrucks-1](customersSequences[k]);

    // Quantity carried by each truck for each customer
    quantity[k in 0..nbTrucks-1][i in 0..nbCustomers-1] <- float(0, demands[i]);

    for [k in 0..nbTrucks-1] {
        local sequence <- customersSequences[k];
        local c <- count(sequence);
    
        // The quantity needed in each route must not exceed the truck capacity
        routeQuantity[k] <- sum(sequence, i => quantity[k][i]);
        constraint routeQuantity[k] <= truckCapacity;

        // A truck is used if it visits at least one customer
        trucksUsed[k] <- c > 0;

        // Distance traveled by truck k
        routeDistances[k] <- sum(1..c-1,
                i => distanceMatrix[sequence[i-1]][sequence[i]]) + (trucksUsed[k] ?
                (distanceDepot[sequence[0]] + distanceDepot[sequence[c-1]]) :
                0);
    }

    for [i in 0..nbCustomers-1] {
        // Each customer must receive at least its demand
        quantityServed[i] <- sum[k in 0..nbTrucks-1](quantity[k][i]
                * contains(customersSequences[k], i));
        constraint quantityServed[i] >= demands[i];
    }

    totalDistance <- sum[k in 0..nbTrucks-1](routeDistances[k]);

    // Objective: minimize the distance traveled
    minimize totalDistance;
}

/* Write the solution in a file with the following format:
    * - Each line k contains the customers visited by the truck k */
function output () {
    if (solFileName == nil) return;
    local outfile = io.openWrite(solFileName);

    outfile.println(totalDistance.value);
    for [customer in 0..nbCustomers-1] {
        outfile.print(customer + 1, ": ");
        for [k in 0..nbTrucks-1] {
            if (trucksUsed[k].value != 1) continue;
            if ((customersSequences[k].value).contains(customer))
                outfile.print(k + 1, " ");
        }
        outfile.println();
    }
}

/* Parametrize the solver */
function param () {
    if (lsTimeLimit == nil) lsTimeLimit = 20;
}

function readInputSdvrp() {
    local inFile = io.openRead(inFileName);
    nbCustomers = inFile.readInt();
    truckCapacity = inFile.readInt();
    nbTrucks = nbCustomers;
    
    // Extracting the demand of each customer
    demands[i in 0..nbCustomers-1] = inFile.readInt(); 
    
    // Extracting the coordinates of the depot and the customers
    for [i in 0..nbCustomers] {
        nodesX[i] = inFile.readDouble();
        nodesY[i] = inFile.readDouble();
    }
}

function computeDistanceMatrix() {
    // Computing the distance between customers
    for [i in 0..nbCustomers-1] {
        distanceMatrix[i][i] = 0;
        for [j in i+1..nbCustomers-1] {
            // +1 because computeDist expected original data indices,
            // with customers in 1..nbCustomers
            local localDistance = computeDist(i+1, j+1);
            distanceMatrix[j][i] = localDistance;
            distanceMatrix[i][j] = localDistance;
        }
    }
    // Computing the distance between depot and customers
    for [i in 0..nbCustomers-1] {
        local localDistance = computeDist(0, i+1);
        distanceDepot[i] = localDistance;
    }
}

function computeDist(i, j) {
    local exactDist = sqrt(pow((nodesX[i] - nodesX[j]), 2) + pow((nodesY[i] - nodesY[j]), 2));
    return floor(exactDist + 0.5);
}
Execution (Windows)
set PYTHONPATH=%LS_HOME%\bin\python
python sdvrp.py instances\S51D4.sd
Execution (Linux)
export PYTHONPATH=/opt/localsolver_12_0/bin/python
python sdvrp.py instances/S51D4.sd
import localsolver
import sys
import math


def read_elem(filename):
    with open(filename) as f:
        return [str(elem) for elem in f.read().split()]


def main(instance_file, str_time_limit, sol_file):
    #
    # Read instance data
    #
    nb_customers, truck_capacity, dist_matrix_data, dist_depot_data, demands_data = \
        read_input_sdvrp(instance_file)
    nb_trucks = nb_customers

    with localsolver.LocalSolver() as ls:
        #
        # Declare the optimization model
        #
        model = ls.model

        # Sequence of customers visited by each truck
        customers_sequences = [model.list(nb_customers) for _ in range(nb_trucks)]

        # Quantity carried by each truck for each customer
        quantity = [None] * nb_trucks
        for k in range(nb_trucks):
            quantity[k] = [model.float(0, demands_data[i]) for i in range(nb_customers)]

        # All customers must be visited at least by one truck
        model.constraint(model.cover(customers_sequences))

        # Create LocalSolver arrays to be able to access them with "at" operators
        dist_matrix = model.array(dist_matrix_data)
        dist_depot = model.array(dist_depot_data)

        route_distances = [None] * nb_trucks
        trucks_used = [None] * nb_trucks

        for k in range(nb_trucks):
            sequence = customers_sequences[k]
            c = model.count(sequence)

            # A truck is used if it visits at least one customer
            trucks_used[k] = model.count(sequence) > 0

            # The quantity carried in each route must not exceed the truck capacity
            quantity_array = model.array(quantity[k])
            quantity_lambda = model.lambda_function(lambda i: quantity_array[i])
            route_quantity = model.sum(sequence, quantity_lambda)
            model.constraint(route_quantity <= truck_capacity)

            # Distance traveled by each truck
            dist_lambda = model.lambda_function(
                lambda i: model.at(dist_matrix, sequence[i - 1], sequence[i]))
            route_distances[k] = model.sum(model.range(1, c), dist_lambda) \
                + model.iif(
                    trucks_used[k],
                    dist_depot[sequence[0]] + dist_depot[sequence[c - 1]],
                    0)

        for i in range(nb_customers):
            # Each customer must receive at least its demand
            quantity_served = model.sum(
                quantity[k][i] * model.contains(customers_sequences[k], i)
                for k in range(nb_trucks))
            model.constraint(quantity_served >= demands_data[i])

        total_distance = model.sum(route_distances)

        # Objective: minimize the distance traveled
        model.minimize(total_distance)

        model.close()

        # Parameterize the solver
        ls.param.time_limit = int(str_time_limit)

        ls.solve()

        #
        # Write the solution in a file with the following format:
        # each line k contain the customers visited by the truck k
        #
        if len(sys.argv) >= 3:
            with open(sol_file, 'w') as f:
                f.write("%d \n" % total_distance.value)
                for k in range(nb_trucks):
                    if trucks_used[k].value != 1:
                        continue
                    # Values in sequence are in [0..nbCustomers-1]. +1 is to put it
                    # back in [1..nbCustomers]
                    for customer in customers_sequences[k].value:
                        f.write("%d " % (customer + 1))
                    f.write("\n")


def read_input_sdvrp(filename):
    file_it = iter(read_elem(filename))

    nb_customers = int(next(file_it))
    capacity = int(next(file_it))

    demands = [None] * nb_customers
    for i in range(nb_customers):
        demands[i] = int(next(file_it))

    # Extracting the coordinates of the depot and the customers
    customers_x = [None] * nb_customers
    customers_y = [None] * nb_customers
    depot_x = float(next(file_it))
    depot_y = float(next(file_it))
    for i in range(nb_customers):
        customers_x[i] = float(next(file_it))
        customers_y[i] = float(next(file_it))

    distance_matrix = compute_distance_matrix(customers_x, customers_y)
    distance_depots = compute_distance_depots(depot_x, depot_y, customers_x, customers_y)
    return nb_customers, capacity, distance_matrix, distance_depots, demands


# Compute the distance between two customers
def compute_distance_matrix(customers_x, customers_y):
    nb_customers = len(customers_x)
    distance_matrix = [[None for _ in range(nb_customers)] for _ in range(nb_customers)]
    for i in range(nb_customers):
        distance_matrix[i][i] = 0
        for j in range(nb_customers):
            dist = compute_dist(customers_x[i], customers_x[j], customers_y[i], customers_y[j])
            distance_matrix[i][j] = dist
            distance_matrix[j][i] = dist
    return distance_matrix


# Compute the distances to depot
def compute_distance_depots(depot_x, depot_y, customers_x, customers_y):
    nb_customers = len(customers_x)
    distance_depots = [None] * nb_customers
    for i in range(nb_customers):
        dist = compute_dist(depot_x, customers_x[i], depot_y, customers_y[i])
        distance_depots[i] = dist
    return distance_depots


def compute_dist(xi, xj, yi, yj):
    exact_dist = math.sqrt(math.pow(xi - xj, 2) + math.pow(yi - yj, 2))
    return int(math.floor(exact_dist + 0.5))


if __name__ == '__main__':
    if len(sys.argv) < 2:
        print("Usage: python sdvrp.py input_file [output_file] [time_limit]")
        sys.exit(1)

    instance_file = sys.argv[1]
    sol_file = sys.argv[2] if len(sys.argv) > 2 else None
    str_time_limit = sys.argv[3] if len(sys.argv) > 3 else "20"

    main(instance_file, str_time_limit, sol_file)
Compilation / Execution (Windows)
cl /EHsc sdvrp.cpp -I%LS_HOME%\include /link %LS_HOME%\bin\localsolver120.lib
sdvrp instances\S51D4.sd
Compilation / Execution (Linux)
g++ sdvrp.cpp -I/opt/localsolver_12_0/include -llocalsolver120 -lpthread -o sdvrp
./sdvrp instances/S51D4.sd
#include "localsolver.h"
#include <cmath>
#include <cstring>
#include <fstream>
#include <iostream>
#include <vector>

using namespace localsolver;
using namespace std;

class Sdvrp {
public:
    // LocalSolver
    LocalSolver localsolver;

    // Number of customers
    int nbCustomers;

    // Capacity of the trucks
    int truckCapacity;

    // Demand of each customer
    vector<int> demandsData;

    // Distance matrix
    vector<vector<int>> distMatrixData;

    // Distance between customers and depot
    vector<int> distDepotData;

    // Number of trucks
    int nbTrucks;

    // Decision variables
    vector<LSExpression> customersSequences;

    // Are the trucks actually used
    vector<LSExpression> trucksUsed;

    // Distance traveled by all the trucks
    LSExpression totalDistance;

    // Quantity carried by each truck
    vector<vector<LSExpression>> quantity;

    /* Read instance data */
    void readInstance(const string& fileName) {
        readInputSdvrp(fileName);
        nbTrucks = nbCustomers;
    }

    void solve(int limit) {
        // Declare the optimization model
        LSModel model = localsolver.getModel();

        // Sequence of customers visited by each truck
        customersSequences.resize(nbCustomers);
        for (int k = 0; k < nbTrucks; ++k) {
            customersSequences[k] = model.listVar(nbCustomers);
        }

        // Quantity carried by each truck for each customer
        quantity.resize(nbTrucks);
        for (int k = 0; k < nbTrucks; ++k) {
            quantity[k].resize(nbTrucks);
            for (int i = 0; i < nbCustomers; ++i) {
                quantity[k][i] = model.floatVar(0, demandsData[i]);
            }
        }

        // All customers must be visited by exactly one truck
        model.constraint(model.cover(customersSequences.begin(), customersSequences.end()));

        // Create LocalSolver arrays to be able to access them with "at" operators
        LSExpression distMatrix = model.array();
        for (int n = 0; n < nbCustomers; ++n) {
            distMatrix.addOperand(model.array(distMatrixData[n].begin(), distMatrixData[n].end()));
        }
        LSExpression distDepot = model.array(distDepotData.begin(), distDepotData.end());

        trucksUsed.resize(nbTrucks);
        vector<LSExpression> distRoutes(nbTrucks);

        for (int k = 0; k < nbTrucks; ++k) {
            LSExpression sequence = customersSequences[k];
            LSExpression c = model.count(sequence);

            // A truck is used if it visits at least one customer
            trucksUsed[k] = c > 0;

            // The quantity carried in each route must not exceed the truck capacity
            LSExpression quantityArray = model.array(quantity[k].begin(), quantity[k].end());
            LSExpression quantityLambda = model.createLambdaFunction(
                    [&](LSExpression i) { return quantityArray[i]; });
            LSExpression routeQuantity = model.sum(sequence, quantityLambda);
            model.constraint(routeQuantity <= truckCapacity);

            // Distance traveled by truck k
            LSExpression distLambda = model.createLambdaFunction([&](LSExpression i) {
                return model.at(distMatrix, model.at(sequence, model.sub(i, 1)), model.at(sequence, i));
            });
            distRoutes[k] = model.sum(model.sum(model.range(1, c), distLambda),
                                      model.iif(trucksUsed[k],
                                                model.sum(model.at(distDepot, model.at(sequence, 0)),
                                                          model.at(distDepot, model.at(sequence, c - 1))),
                                                0));
        }

        for (int i = 0; i < nbCustomers; ++i) {
            // Each customer must receive at least its demand
            LSExpression quantityServed = model.sum();
            for (int k = 0; k < nbTrucks; ++k)
                quantityServed.addOperand(quantity[k][i] * model.contains(customersSequences[k], i));
            model.constraint(quantityServed >= demandsData[i]);
        }

        totalDistance = model.sum(distRoutes.begin(), distRoutes.end());

        // Objective: minimize the distance traveled
        model.minimize(totalDistance);

        model.close();

        // Parameterize the solver
        localsolver.getParam().setTimeLimit(limit);

        localsolver.solve();
    }

    /* Write the solution in a file with the following format:
     *  - Each line k contains the customers visited by the truck k */
    void writeSolution(const string& fileName) {
        ofstream outfile;
        outfile.exceptions(ofstream::failbit | ofstream::badbit);
        outfile.open(fileName.c_str());

        outfile << totalDistance.getValue() << endl;
        for (int k = 0; k < nbTrucks; ++k) {
            if (trucksUsed[k].getValue() != 1)
                continue;
            // Values in sequence are in [0..nbCustomers-1]. +1 is to put it back in
            // [1..nbCustomers]
            LSCollection customersCollection = customersSequences[k].getCollectionValue();
            for (int i = 0; i < customersCollection.count(); ++i) {
                outfile << customersCollection[i] + 1 << " ";
            }
            outfile << endl;
        }
    }

private:
    void readInputSdvrp(const string& fileName) {
        ifstream infile(fileName.c_str());
        if (!infile.is_open()) {
            throw std::runtime_error("File cannot be opened.");
        }

        string str;
        char* line;
        istringstream iss;
        getline(infile, str);
        line = strdup(str.c_str());
        iss.str(line);
        iss >> nbCustomers;
        iss >> truckCapacity;
        nbTrucks = nbCustomers;
        getline(infile, str);
        line = strdup(str.c_str());
        istringstream stream(line);
        demandsData.resize(nbCustomers);
        int demand;
        for (int n = 0; n < nbCustomers; ++n) {
            stream >> demand;
            demandsData[n] = demand;
        }
        vector<int> customersX(nbCustomers);
        vector<int> customersY(nbCustomers);
        int depotX, depotY;
        getline(infile, str);
        line = strdup(str.c_str());
        istringstream iss_1(line);
        iss_1 >> depotX;
        iss_1 >> depotY;
        for (int i = 0; i < nbCustomers; ++i) {
            getline(infile, str);
            line = strdup(str.c_str());
            istringstream iss(line);
            iss >> customersX[i];
            iss >> customersY[i];
        }

        computeDistanceMatrix(depotX, depotY, customersX, customersY);

        infile.close();
    }

    // Compute the distance matrix
    void computeDistanceMatrix(int depotX, int depotY, const vector<int>& customersX, const vector<int>& customersY) {
        distMatrixData.resize(nbCustomers);
        for (int i = 0; i < nbCustomers; ++i) {
            distMatrixData[i].resize(nbCustomers);
        }
        for (int i = 0; i < nbCustomers; ++i) {
            distMatrixData[i][i] = 0;
            for (int j = i + 1; j < nbCustomers; ++j) {
                int distance = computeDist(customersX[i], customersX[j], customersY[i], customersY[j]);
                distMatrixData[i][j] = distance;
                distMatrixData[j][i] = distance;
            }
        }

        distDepotData.resize(nbCustomers);
        for (int i = 0; i < nbCustomers; ++i) {
            distDepotData[i] = computeDist(depotX, customersX[i], depotY, customersY[i]);
        }
    }

    static int computeDist(int xi, int xj, int yi, int yj) {
        double exactDist = sqrt(pow((double)xi - xj, 2) + pow((double)yi - yj, 2));
        return floor(exactDist + 0.5);
    }
};

int main(int argc, char** argv) {
    if (argc < 2) {
        cerr << "Usage: Sdvrp inputFile [outputFile] [timeLimit]" << endl;
        return 1;
    }

    const char* instanceFile = argv[1];
    const char* solFile = argc > 2 ? argv[2] : NULL;
    const char* strTimeLimit = argc > 3 ? argv[3] : "20";

    try {
        Sdvrp model;
        model.readInstance(instanceFile);
        model.solve(atoi(strTimeLimit));
        if (solFile != NULL)
            model.writeSolution(solFile);
        return 0;
    } catch (const exception& e) {
        cerr << "An error occurred: " << e.what() << endl;
        return 1;
    }
}
Compilation / Execution (Windows)
copy %LS_HOME%\bin\localsolvernet.dll .
csc Sdvrp.cs /reference:localsolvernet.dll
Sdvrp instances\S51D4.sd
/********** Sdvrp.cs **********/
using System;
using System.IO;
using localsolver;

public class Sdvrp : IDisposable
{
    // LocalSolver
    LocalSolver localsolver;

    // Number of customers
    int nbCustomers;

    // Capacity of the trucks
    int truckCapacity;

    // Demand of each customer
    long[] demandsData;

    // Distance matrix
    long[][] distMatrixData;

    // Distances between customers and depot
    long[] distDepotData;

    // Number of trucks
    int nbTrucks;

    // Decision variables
    LSExpression[] customersSequences;

    // Are the trucks actually used
    LSExpression[] trucksUsed;

    // Distance traveled by each truck
    LSExpression[] distRoutes;

    // Distance traveled by all the trucks
    LSExpression totalDistance;

    // Quantity carried by each truck
    LSExpression[][] quantity;

    public Sdvrp()
    {
        localsolver = new LocalSolver();
    }

    // Read instance data
    void ReadInstance(string fileName)
    {
        ReadInputSdvrp(fileName);
    }

    public void Dispose()
    {
        if (localsolver != null)
            localsolver.Dispose();
    }

    void Solve(int limit)
    {
        // Declare the optimization model
        LSModel model = localsolver.GetModel();

        trucksUsed = new LSExpression[nbTrucks];
        customersSequences = new LSExpression[nbTrucks];
        distRoutes = new LSExpression[nbTrucks];
        quantity = new LSExpression[nbTrucks][];

        // Sequence of customers visited by each truck
        for (int k = 0; k < nbTrucks; ++k)
            customersSequences[k] = model.List(nbCustomers);

        // Quantity carried by each truck for each customer
        for (int k = 0; k < nbTrucks; ++k)
        {
            quantity[k] = new LSExpression[nbCustomers];
            for (int i = 0; i < nbCustomers; ++i)
                quantity[k][i] = model.Float(0, demandsData[i]);
        }

        // Every customer must be visited by at least one truck
        model.Constraint(model.Cover(customersSequences));

        // Create LocalSolver arrays to be able to access them with "at" operators
        LSExpression distMatrix = model.Array(distMatrixData);
        LSExpression distDepot = model.Array(distDepotData);

        for (int k = 0; k < nbTrucks; ++k)
        {
            LSExpression sequence = customersSequences[k];
            LSExpression c = model.Count(sequence);

            // A truck is used if it visits at least one customer
            trucksUsed[k] = c > 0;

            // The quantity carried in each route must not exceed the truck capacity
            LSExpression quantityArray = model.Array(quantity[k]);
            LSExpression quantityLambda = model.LambdaFunction(i => quantityArray[i]);
            LSExpression routeQuantity = model.Sum(sequence, quantityLambda);
            model.Constraint(routeQuantity <= truckCapacity);

            // Distance traveled by truck k
            LSExpression distLambda = model.LambdaFunction(
                i => distMatrix[sequence[i - 1], sequence[i]]
            );
            distRoutes[k] =
                model.Sum(model.Range(1, c), distLambda)
                + model.If(trucksUsed[k], distDepot[sequence[0]] + distDepot[sequence[c - 1]], 0);
        }

        for (int i = 0; i < nbCustomers; ++i)
        {
            // Each customer must receive at least its demand
            LSExpression quantityServed = model.Sum();
            for (int k = 0; k < nbTrucks; ++k)
                quantityServed.AddOperand(
                    quantity[k][i] * model.Contains(customersSequences[k], i)
                );
            model.Constraint(quantityServed >= demandsData[i]);
        }

        totalDistance = model.Sum(distRoutes);

        // Objective: minimize the distance traveled
        model.Minimize(totalDistance);

        model.Close();

        // Parameterize the solver
        localsolver.GetParam().SetTimeLimit(limit);

        localsolver.Solve();
    }

    /* Write the solution in a file with the following format:
     *  - Each line k contains the customers visited by the truck k */
    void WriteSolution(string fileName)
    {
        using (StreamWriter output = new StreamWriter(fileName))
        {
            output.WriteLine(totalDistance.GetValue());
            for (int k = 0; k < nbTrucks; ++k)
            {
                if (trucksUsed[k].GetValue() != 1)
                    continue;
                // Values in sequence are in [0..nbCustomers-1]. +1 is to put it
                // back in [1..nbCustomers]
                LSCollection customersCollection = customersSequences[k].GetCollectionValue();
                for (int i = 0; i < customersCollection.Count(); ++i)
                    output.Write((customersCollection[i] + 1) + " ");
                output.WriteLine();
            }
        }
    }

    public static void Main(string[] args)
    {
        if (args.Length < 1)
        {
            Console.WriteLine("Usage: Sdvrp inputFile [solFile] [timeLimit]");
            Environment.Exit(1);
        }
        string instanceFile = args[0];
        string outputFile = args.Length > 1 ? args[1] : null;
        string strTimeLimit = args.Length > 2 ? args[2] : "20";

        using (Sdvrp model = new Sdvrp())
        {
            model.ReadInstance(instanceFile);
            model.Solve(int.Parse(strTimeLimit));
            if (outputFile != null)
                model.WriteSolution(outputFile);
        }
    }

    private static string[] SplitInput(StreamReader input)
    {
        string line = input.ReadLine();
        if (line == null)
            return new string[0];
        return line.Split(new[] { ' ' }, StringSplitOptions.RemoveEmptyEntries);
    }

    private void ReadInputSdvrp(string fileName)
    {
        using (StreamReader input = new StreamReader(fileName))
        {
            string[] splitted;
            splitted = SplitInput(input);

            nbCustomers = int.Parse(splitted[0]);
            nbTrucks = nbCustomers;
            truckCapacity = int.Parse(splitted[1]);

            demandsData = new long[nbCustomers];

            splitted = SplitInput(input);
            for (int n = 0; n < nbCustomers; ++n)
                demandsData[n] = int.Parse(splitted[n]);

            splitted = SplitInput(input);
            int depotX = int.Parse(splitted[0]);
            int depotY = int.Parse(splitted[1]);

            int[] customersX = new int[nbCustomers];
            int[] customersY = new int[nbCustomers];
            for (int n = 0; n < nbCustomers; ++n)
            {
                splitted = SplitInput(input);
                customersX[n] = int.Parse(splitted[0]);
                customersY[n] = int.Parse(splitted[1]);
            }

            ComputeDistanceMatrix(depotX, depotY, customersX, customersY);
        }
    }

    // Compute the distance matrix
    private void ComputeDistanceMatrix(int depotX, int depotY, int[] customersX, int[] customersY)
    {
        distMatrixData = new long[nbCustomers][];
        for (int i = 0; i < nbCustomers; ++i)
            distMatrixData[i] = new long[nbCustomers];

        for (int i = 0; i < nbCustomers; ++i)
        {
            distMatrixData[i][i] = 0;
            for (int j = i + 1; j < nbCustomers; ++j)
            {
                long dist = ComputeDist(customersX[i], customersX[j], customersY[i], customersY[j]);
                distMatrixData[i][j] = dist;
                distMatrixData[j][i] = dist;
            }
        }
        distDepotData = new long[nbCustomers];
        for (int i = 0; i < nbCustomers; ++i)
            distDepotData[i] = ComputeDist(depotX, customersX[i], depotY, customersY[i]);
    }

    private static long ComputeDist(int xi, int xj, int yi, int yj)
    {
        double exactDist = Math.Sqrt(Math.Pow(xi - xj, 2) + Math.Pow(yi - yj, 2));
        return (long)Math.Floor(exactDist + 0.5);
    }
}
Compilation / Execution (Windows)
javac Sdvrp.java -cp %LS_HOME%\bin\localsolver.jar
java -cp %LS_HOME%\bin\localsolver.jar;. Sdvrp instances\S51D4.sd
Compilation / Execution (Linux)
javac Sdvrp.java -cp /opt/localsolver_12_0/bin/localsolver.jar
java -cp /opt/localsolver_12_0/bin/localsolver.jar:. Sdvrp instances/S51D4.sd
import java.util.*;
import java.io.*;
import localsolver.*;

public class Sdvrp {
    // LocalSolver
    private final LocalSolver localsolver;

    // Number of customers
    int nbCustomers;

    // Capacity of the trucks
    private int truckCapacity;

    // Demand of each customer
    private long[] demandsData;

    // Distance matrix
    private long[][] distMatrixData;

    // Distances between customers and depot
    private long[] distDepotData;

    // Number of trucks
    private int nbTrucks;

    // Decision variables
    private LSExpression[] customersSequences;

    // Are the trucks actually used
    private LSExpression[] trucksUsed;

    // Quantity carried by each truck
    private LSExpression[][] quantity;

    // Distance traveled by each truck
    LSExpression[] distRoutes;

    // Distance traveled by all the trucks
    private LSExpression totalDistance;

    private Sdvrp(LocalSolver localsolver) {
        this.localsolver = localsolver;
    }

    private void solve(int limit) {
        // Declare the optimization model
        LSModel model = localsolver.getModel();

        trucksUsed = new LSExpression[nbTrucks];
        customersSequences = new LSExpression[nbTrucks];
        distRoutes = new LSExpression[nbTrucks];
        quantity = new LSExpression[nbTrucks][nbCustomers];

        // Sequence of customers visited by each truck
        for (int k = 0; k < nbTrucks; ++k)
            customersSequences[k] = model.listVar(nbCustomers);

        // Quantity carried by each truck for each customer
        for (int k = 0; k < nbTrucks; ++k)
            for (int i = 0; i < nbCustomers; ++i)
                quantity[k][i] = model.floatVar(0, demandsData[i]);

        // Every customer must be visited by at least one truck
        model.constraint(model.cover(customersSequences));

        // Create LocalSolver arrays to be able to access them with "at" operators
        LSExpression distMatrix = model.array(distMatrixData);
        LSExpression distDepot = model.array(distDepotData);

        for (int k = 0; k < nbTrucks; ++k) {
            LSExpression sequence = customersSequences[k];
            LSExpression c = model.count(sequence);

            // A truck is used if it visits at least one customer
            trucksUsed[k] = model.gt(c, 0);

            // The quantity carried in each route must not exceed the truck capacity
            LSExpression quantityArray = model.array(quantity[k]);
            LSExpression quantityLambda = model.lambdaFunction(i -> model.at(quantityArray, i));
            LSExpression routeQuantity = model.sum(sequence, quantityLambda);
            model.constraint(model.leq(routeQuantity, truckCapacity));

            // Distance traveled by truck k
            LSExpression distLambda = model
                .lambdaFunction(i -> model.at(distMatrix, model.at(sequence, model.sub(i, 1)), model.at(sequence, i)));
            distRoutes[k] = model.sum(model.sum(model.range(1, c), distLambda),
                model.iif(trucksUsed[k], model.sum(model.at(distDepot, model.at(sequence, 0)),
                    model.at(distDepot, model.at(sequence, model.sub(c, 1)))), 0));
        }

        for (int i = 0; i < nbCustomers; ++i) {
            // Each customer must receive at least its demand
            LSExpression quantityServed = model.sum();
            for (int k = 0; k < nbTrucks; ++k)
                quantityServed.addOperand(model.prod(quantity[k][i], model.contains(customersSequences[k], i)));
            model.constraint(model.geq(quantityServed, demandsData[i]));
        }

        totalDistance = model.sum(distRoutes);

        // Objective: minimize the distance traveled
        model.minimize(totalDistance);

        model.close();

        // Parameterize the solver
        localsolver.getParam().setTimeLimit(limit);

        localsolver.solve();
    }

    private void readInstance(String fileName) throws IOException {
        try (Scanner input = new Scanner(new File(fileName))) {
            nbCustomers = input.nextInt();
            truckCapacity = input.nextInt();
            nbTrucks = nbCustomers;
            input.nextLine();
            demandsData = new long[nbCustomers];
            for (int n = 1; n <= nbCustomers; ++n) {
                demandsData[n - 1] = input.nextInt();
            }

            input.nextLine();

            int[] customersX = new int[nbCustomers];
            int[] customersY = new int[nbCustomers];
            int depotX = input.nextInt();
            int depotY = input.nextInt();
            input.nextLine();
            for (int n = 1; n <= nbCustomers; ++n) {
                customersX[n - 1] = input.nextInt();
                customersY[n - 1] = input.nextInt();
                input.nextLine();
            }

            computeDistanceMatrix(depotX, depotY, customersX, customersY);
        }
    }

    // Compute the distance matrix
    private void computeDistanceMatrix(int depotX, int depotY, int[] customersX, int[] customersY) {
        distMatrixData = new long[nbCustomers][nbCustomers];
        for (int i = 0; i < nbCustomers; ++i) {
            distMatrixData[i][i] = 0;
            for (int j = i + 1; j < nbCustomers; ++j) {
                long dist = computeDist(customersX[i], customersX[j], customersY[i], customersY[j]);
                distMatrixData[i][j] = dist;
                distMatrixData[j][i] = dist;
            }
        }

        distDepotData = new long[nbCustomers];
        for (int i = 0; i < nbCustomers; ++i) {
            distDepotData[i] = computeDist(depotX, customersX[i], depotY, customersY[i]);
        }
    }

    private static long computeDist(int xi, int xj, int yi, int yj) {
        double exactDist = Math.sqrt(Math.pow(xi - xj, 2) + Math.pow(yi - yj, 2));
        return (long) Math.floor(exactDist + 0.5);
    }

    public static void main(String[] args) {
        if (args.length < 1) {
            System.err.println("Usage: java Sdvrp inputFile [outputFile] [timeLimit]");
            System.exit(1);
        }

        try (LocalSolver localsolver = new LocalSolver()) {
            String instanceFile = args[0];
            String outputFile = args.length > 1 ? args[1] : null;
            String strTimeLimit = args.length > 2 ? args[2] : "20";

            Sdvrp model = new Sdvrp(localsolver);
            model.readInstance(instanceFile);
            model.solve(Integer.parseInt(strTimeLimit));
            if (outputFile != null) {
                model.writeSolution(outputFile);
            }
        } catch (Exception ex) {
            System.err.println(ex);
            ex.printStackTrace();
            System.exit(1);
        }
    }

    /* Write the solution in a file with the following format:
     * - Each line k contains the customers visited by the truck k */
    private void writeSolution(String fileName) throws IOException {
        try (PrintWriter output = new PrintWriter(fileName)) {
            output.println(totalDistance.getValue());
            for (int k = 0; k < nbTrucks; ++k) {
                if (trucksUsed[k].getValue() != 1)
                    continue;
                // Values in sequence are in [0..nbCustomers-1]. +1 is to put it
                // back in [1..nbCustomers]
                LSCollection customersCollection = customersSequences[k].getCollectionValue();
                for (int i = 0; i < customersCollection.count(); ++i)
                    output.print((customersCollection.get(i) + 1) + " ");
                output.println();
            }
        }
    }
}