This page is for an old version of Hexaly Optimizer.
We recommend that you update your version and read the documentation for the
latest stable release.
Branin Function¶
Principles learned¶
Add float decision variables
Minimize a non-linear objective
Create a highly non-linear expression: with operators “cos” and “pow”
Problem¶
Branin function is defined by f(x) = a(x2 - b*x1² + c*x1 - r)² +
s(1-t)cos(x1) + s
For more details, see: branin.html
Download the exampleProgram¶
Constants are fixed to the recommended values: a=1
, b=5.1/(4π²)
,
c=5/π
, s=10
and t=1/(8π)
. The domains of x1
and x2
are
respectively [-5,10]
and [0,15]
.
The model is really straightforward: two decision variables x1
and x2
are declared, and then the Branin function to be minimized is applied to this
couple.
- Execution:
- localsolver branin.lsp [lsTimeLimit=] [solFileName=]
use io;
/* Declare the optimization model */
function model() {
PI = 3.14159265359;
a = 1;
b = 5.1 / (4 * pow(PI, 2));
c = 5 / PI;
r = 6;
s = 10;
t = 1 / (8 * PI);
x1 <- float(-5, 10);
x2 <- float(0, 15);
// f = a(x2 - b*x1^2 + c*x1 - r)^2 + s(1-t)cos(x1) + s
f <- a * pow(x2 - b * pow(x1, 2) + c * x1 - r, 2) + s * (1 - t) * cos(x1) + s;
minimize f;
}
/* Parametrize the solver */
function param() {
if (lsTimeLimit == nil) lsTimeLimit = 6;
}
/* Write the solution in a file */
function output() {
if (solFileName != nil)
{
local solFile = io.openWrite(solFileName);
solFile.println("x1=", x1.value);
solFile.println("x2=", x2.value);
}
}
- Execution (Windows)
- set PYTHONPATH=%LS_HOME%\bin\pythonpython branin.py
- Execution (Linux)
- export PYTHONPATH=/opt/localsolver_11_5/bin/pythonpython branin.py
import localsolver
import sys
with localsolver.LocalSolver() as ls:
# Parameters of the function
PI = 3.14159265359
a = 1
b = 5.1 / (4 * pow(PI, 2))
c = 5 / PI
r = 6
s = 10
t = 1 / (8 * PI)
#
# Declare the optimization model
#
model = ls.model
# Numerical decisions
x1 = model.float(-5.0, 10.0)
x2 = model.float(0.0, 15.0)
# f = a(x2 - b*x1^2 + c*x1 - r)^2 + s(1-t)cos(x1) + s
f = a * (x2 - b * x1 ** 2 + c * x1 - r) ** 2 + s * (1 - t) * model.cos(x1) + s
# Minimize f
model.minimize(f)
model.close()
# Parameterize the solver
if len(sys.argv) >= 3:
ls.param.time_limit = int(sys.argv[2])
else:
ls.param.time_limit = 6
ls.solve()
#
# Write the solution in a file
#
if len(sys.argv) >= 2:
with open(sys.argv[1], 'w') as f:
f.write("x1=%f\n" % x1.value)
f.write("x2=%f\n" % x2.value)
- Compilation / Execution (Windows)
- cl /EHsc branin.cpp -I%LS_HOME%\include /link %LS_HOME%\bin\localsolver115.libbranin
- Compilation / Execution (Linux)
- g++ branin.cpp -I/opt/localsolver_11_5/include -llocalsolver115 -lpthread -o braninbranin
#include "localsolver.h"
#include <fstream>
#include <iostream>
#include <vector>
using namespace localsolver;
using namespace std;
class Branin {
public:
// LocalSolver
LocalSolver localsolver;
// LS Program variables
LSExpression x1;
LSExpression x2;
void solve(int limit) {
// Parameters of the function
lsdouble PI = 3.14159265359;
lsdouble a = 1;
lsdouble b = 5.1 / (4 * pow(PI, 2.0));
lsdouble c = 5 / PI;
lsdouble r = 6;
lsdouble s = 10;
lsdouble t = 1 / (8 * PI);
// Declare the optimization model
LSModel model = localsolver.getModel();
// Numerical decisions
x1 = model.floatVar(-5.0, 10.0);
x2 = model.floatVar(0.0, 15.0);
// f = a(x2 - b*x1^2 + c*x1 - r)^2 + s(1-t)cos(x1) + s
LSExpression f = a * model.pow(x2 - b * model.pow(x1, 2) + c * x1 - r, 2) + s * (1 - t) * model.cos(x1) + s;
// Minimize f
model.minimize(f);
model.close();
// Parametrize the solver
localsolver.getParam().setTimeLimit(limit);
localsolver.solve();
}
/* Write the solution in a file */
void writeSolution(const string& fileName) {
ofstream outfile;
outfile.exceptions(ofstream::failbit | ofstream::badbit);
outfile.open(fileName.c_str());
outfile << "x1=" << x1.getDoubleValue() << endl;
outfile << "x2=" << x2.getDoubleValue() << endl;
}
};
int main(int argc, char** argv) {
const char* solFile = argc > 1 ? argv[1] : NULL;
const char* strTimeLimit = argc > 2 ? argv[2] : "6";
try {
Branin model;
model.solve(atoi(strTimeLimit));
if (solFile != NULL)
model.writeSolution(solFile);
} catch (const exception& e) {
cerr << "An error occurred: " << e.what() << endl;
return 1;
}
return 0;
}
- Compilation / Execution (Windows)
- copy %LS_HOME%\bin\localsolvernet.dll .csc Branin.cs /reference:localsolvernet.dllBranin
using System;
using System.IO;
using localsolver;
public class Branin : IDisposable
{
// LocalSolver
private LocalSolver localsolver;
// LS Program variables
private LSExpression x1;
private LSExpression x2;
public Branin()
{
localsolver = new LocalSolver();
}
public void Dispose()
{
if (localsolver != null)
localsolver.Dispose();
}
public void Solve(int limit)
{
// Parameters of the function
double PI = 3.14159265359;
double a = 1;
double b = 5.1 / (4 * Math.Pow(PI, 2.0));
double c = 5 / PI;
double r = 6;
double s = 10;
double t = 1 / (8 * PI);
// Declare the optimization model
LSModel model = localsolver.GetModel();
// Numerical decisions
x1 = model.Float(-5, 10);
x2 = model.Float(0, 15);
// f = a(x2 - b*x1^2 + c*x1 - r)^2 + s(1-t)cos(x1) + s
LSExpression f =
a * model.Pow(x2 - b * model.Pow(x1, 2) + c * x1 - r, 2)
+ s * (1 - t) * model.Cos(x1)
+ s;
// Minimize f
model.Minimize(f);
model.Close();
// Parametrize the solver
localsolver.GetParam().SetTimeLimit(limit);
localsolver.Solve();
}
/* Write the solution in a file */
public void WriteSolution(string fileName)
{
using (StreamWriter output = new StreamWriter(fileName))
{
output.WriteLine("x1=" + x1.GetDoubleValue());
output.WriteLine("x2=" + x2.GetDoubleValue());
}
}
public static void Main(string[] args)
{
string outputFile = args.Length > 0 ? args[0] : null;
string strTimeLimit = args.Length > 1 ? args[1] : "6";
using (Branin model = new Branin())
{
model.Solve(int.Parse(strTimeLimit));
if (outputFile != null)
model.WriteSolution(outputFile);
}
}
}
- Compilation / Execution (Windows)
- javac Branin.java -cp %LS_HOME%\bin\localsolver.jarjava -cp %LS_HOME%\bin\localsolver.jar;. Branin
- Compilation / Execution (Linux)
- javac Branin.java -cp /opt/localsolver_11_5/bin/localsolver.jarjava -cp /opt/localsolver_11_5/bin/localsolver.jar:. Branin
import java.io.*;
import localsolver.*;
public class Branin {
// Parameters of the function
private static final double PI = 3.14159265359;
private static final int a = 1;
private static final double b = 5.1 / (4 * Math.pow(PI, 2));
private static final double c = 5 / PI;
private static final int r = 6;
private static final int s = 10;
private static final double t = 1 / (8 * PI);
// LocalSolver
private final LocalSolver localsolver;
// LS Program variables
private LSExpression x1;
private LSExpression x2;
private Branin(LocalSolver localsolver) {
this.localsolver = localsolver;
}
private void solve(int limit) {
// Declare the optimization model
LSModel model = localsolver.getModel();
// Numerical decisions
x1 = model.floatVar(-5, 10);
x2 = model.floatVar(0, 15);
// f = a(x2 - b*x1^2 + c*x1 - r)^2 + s(1-t)cos(x1) + s
LSExpression f = model.sum();
// f1 = x2 - b*x1^2 + c*x1 - r
LSExpression f1 = model.sum();
f1.addOperand(x2);
f1.addOperand(model.prod(-b, model.pow(x1, 2)));
f1.addOperand(model.prod(c, x1));
f1.addOperand(-r);
// f = a*f1^2 + s(1-t)cos(x1) + s
f.addOperand(model.prod(a, model.pow(f1, 2)));
f.addOperand(model.prod(s * (1 - t), model.cos(x1)));
f.addOperand(s);
// minimize f
model.minimize(f);
// close model, then solve
model.close();
// Parametrize the solver
localsolver.getParam().setTimeLimit(limit);
localsolver.solve();
}
/* Write the solution in a file */
private void writeSolution(String fileName) throws IOException {
try (PrintWriter output = new PrintWriter(fileName)) {
output.println("x1=" + x1.getDoubleValue());
output.println("x2=" + x2.getDoubleValue());
}
}
public static void main(String[] args) {
String outputFile = args.length > 0 ? args[0] : null;
String strTimeLimit = args.length > 1 ? args[1] : "6";
try (LocalSolver localsolver = new LocalSolver()) {
Branin model = new Branin(localsolver);
model.solve(Integer.parseInt(strTimeLimit));
if (outputFile != null) {
model.writeSolution(outputFile);
}
} catch (Exception ex) {
System.err.println(ex);
ex.printStackTrace();
System.exit(1);
}
}
}