K-Means Clustering (MSSC)¶
Principles learned¶
Create a set decision variable
Use the operator “count” to get the number of elements in a set
Use a lambda expression to compute a sum on a set
Use ternary conditions
Problem¶
Given a sample of observations along some dimensions, the goal is to partition these observations into k clusters. Clusters are defined by their center of gravity. Each observation belongs to the cluster with the nearest center of gravity. For more details, see Wikipedia.
Download the exampleData¶
The format of the data is as follows:
1st line: number of observations and number of dimensions
For each observation: coordinate along each dimension, and the actual cluster it belongs to
Program¶
The model implemented here makes use of set variables. For every cluster, we define a set which describes the observations assigned to that cluster. Those sets are constrained to form a partition, which means that an observation must be assigned to exactly one cluster. For each cluster, we compute the centroid of the observations in the cluster, from which we can obtain the variance of the cluster. The variance of a cluster is defined as the sum of the respective squared euclidian distances between the centroid and every element of the cluster. The objective is to minimize the sum of these variances.
- Execution:
- localsolver kmeans.lsp inFileName=instances/iris.dat [lsTimeLimit=] [solFileName=] [k=val]
/********** kmeans.lsp **********/
use io;
/* Reads instance data */
function input() {
usage = "\nUsage: localsolver kmeans.lsp "
+ "inFileName=inputFile [solFileName=outputFile] [lsTimeLimit=timeLimit] [k=value]\n";
if (inFileName == nil) throw usage;
local f = io.openRead(inFileName);
nbObservations = f.readInt();
nbDimensions = f.readInt();
if (k == nil)
k = 2;
for [o in 0..nbObservations-1] {
coordinates[o][d in 0..nbDimensions-1] = f.readDouble();
initialClusters[o] = f.readString();
}
}
/* Declares the optimization model. */
function model() {
// Set decisions: clusters[c] represents the points in cluster c
clusters[1..k] <- set(nbObservations);
// Each point must be in one cluster and one cluster only
constraint partition[c in 1..k](clusters[c]);
// Compute variances
for [c in 1..k] {
local cluster <- clusters[c];
local size <- count(cluster);
// Compute the centroid of the cluster
centroid[d in 0..nbDimensions-1] <- size == 0 ? 0 :
sum(cluster, o => coordinates[o][d]) / size;
// Compute the variance of the cluster
squares[d in 0..nbDimensions-1] <- sum(cluster,
o => pow(coordinates[o][d] - centroid[d], 2));
variances[c] <- sum[d in 0..nbDimensions-1](squares[d]);
}
// Minimize the total variance
obj <- sum[c in 1..k](variances[c]);
minimize obj;
}
/* Parameterizes the solver. */
function param() {
if (lsTimeLimit == nil) lsTimeLimit = 5;
}
/* Writes the solution in a file in the following format:
* - objective value
* - k
* - for each cluster, a line with the elements in the cluster (separated by spaces)
*/
function output() {
if (solFileName == nil) return;
local solFile = io.openWrite(solFileName);
solFile.println(obj.value);
solFile.println(k);
for [c in 1..k] {
for [o in clusters[c].value]
solFile.print(o + " ");
solFile.println();
}
}
- Execution (Windows)
- set PYTHONPATH=%LS_HOME%\bin\pythonpython kmeans.py instances\iris.dat
- Execution (Linux)
- export PYTHONPATH=/opt/localsolver_11_0/bin/pythonpython kmeans.py instances/iris.dat
########## kmeans.py ##########
import localsolver
import sys
if len(sys.argv) < 2:
print("Usage: python kmeans.py inputFile [outputFile] [timeLimit] [k value]")
sys.exit(1)
def read_elem(filename):
with open(filename) as f:
return [str(elem) for elem in f.read().split()]
with localsolver.LocalSolver() as ls:
#
# Reads instance data
#
if len(sys.argv) > 4:
k = int(sys.argv[4])
else:
k = 2
file_it = iter(read_elem(sys.argv[1]))
# Data properties
nb_observations = int(next(file_it))
nb_dimensions = int(next(file_it))
coordinates = [None] * nb_observations
initial_clusters = [None] * nb_observations
for o in range(nb_observations):
coordinates[o] = [None] * (nb_dimensions)
for d in range(nb_dimensions):
coordinates[o][d] = float(next(file_it))
initial_clusters[o] = next(file_it)
#
# Declares the optimization model
#
model = ls.model
# clusters[c] represents the points in cluster c
clusters = [model.set(nb_observations) for c in range(k)]
# Each point must be in one cluster and one cluster only
model.constraint(model.partition(clusters))
# Coordinates of points
coordinates_array = model.array(coordinates)
# Compute variances
variances = []
for cluster in clusters:
size = model.count(cluster)
# Compute centroid of cluster
centroid = [0 for d in range(nb_dimensions)]
for d in range(nb_dimensions):
coordinate_selector = model.lambda_function(
lambda i: model.at(coordinates_array, i, d))
centroid[d] = model.iif(size == 0, 0,
model.sum(cluster, coordinate_selector) / size)
# Compute variance of cluster
variance = model.sum()
for d in range(nb_dimensions):
dimension_variance_selector = model.lambda_function(lambda i: model.sum(
model.pow(model.at(coordinates_array, i, d) - centroid[d], 2)))
dimension_variance = model.sum(cluster, dimension_variance_selector)
variance.add_operand(dimension_variance)
variances.append(variance)
# Minimize the total variance
obj = model.sum(variances)
model.minimize(obj)
model.close()
#
# Parameterizes the solver
#
if len(sys.argv) > 3:
ls.param.time_limit = int(sys.argv[3])
else:
ls.param.time_limit = 5
ls.solve()
#
# Writes the solution in a file in the following format:
# - objective value
# - k
# - for each cluster, a line with the elements in the cluster (separated by spaces)
#
if len(sys.argv) > 2:
with open(sys.argv[2], 'w') as f:
f.write("%f\n" % obj.value)
f.write("%d\n" % k)
for c in range(k):
for o in clusters[c].value:
f.write("%d " % o)
f.write("\n")
- Compilation / Execution (Windows)
- cl /EHsc kmeans.cpp -I%LS_HOME%\include /link %LS_HOME%\bin\localsolver110.libkmeans instances\iris.dat
- Compilation / Execution (Linux)
- g++ kmeans.cpp -I/opt/localsolver_11_0/include -llocalsolver110 -lpthread -o kmeans./kmeans instances/iris.dat
//********* kmeans.cpp *********
#include <iostream>
#include <fstream>
#include <vector>
#include <limits>
#include "localsolver.h"
using namespace localsolver;
using namespace std;
class Kmeans {
public:
// Data properties
int nbObservations;
int nbDimensions;
int k;
vector<vector<lsdouble> > coordinates;
vector<string> initialClusters;
// Solver.
LocalSolver localsolver;
// Decisions
vector<LSExpression> clusters;
// Objective
LSExpression obj;
// Constructor
Kmeans(int k) : k(k) { }
// Reads instance data
void readInstance(const string& fileName) {
ifstream infile;
infile.exceptions(ifstream::failbit | ifstream::badbit);
infile.open(fileName.c_str());
infile >> nbObservations;
infile >> nbDimensions;
coordinates.resize(nbObservations);
initialClusters.resize(nbObservations);
for (int o = 0; o < nbObservations; o++) {
coordinates[o].resize(nbDimensions);
for (int d = 0; d < nbDimensions; d++) {
infile >> coordinates[o][d];
}
infile >> initialClusters[o];
}
}
void solve(int limit) {
// Declares the optimization model.
LSModel model = localsolver.getModel();
// Set decisions: clusters[c] represents the points in cluster c
clusters.resize(k);
for (int c = 0; c < k; ++c) {
clusters[c] = model.setVar(nbObservations);
}
// Each point must be in one cluster and one cluster only
model.constraint(model.partition(clusters.begin(), clusters.end()));
// Coordinates of points
LSExpression coordinatesArray = model.array();
for (int o = 0; o < nbObservations; o++) {
coordinatesArray.addOperand(model.array(coordinates[o].begin(),
coordinates[o].end()));
}
// Compute variances
vector<LSExpression> variances;
variances.resize(k);
for (int c = 0; c < k; c++) {
LSExpression cluster = clusters[c];
LSExpression size = model.count(cluster);
// Compute the centroid of the cluster
LSExpression centroid = model.array();
for (int d = 0; d < nbDimensions; d++) {
LSExpression coordinateSelector = model.createLambdaFunction(
[&](LSExpression o) { return model.at(coordinatesArray, o, d); });
centroid.addOperand(model.iif(size == 0, 0,
model.sum(cluster, coordinateSelector) / size));
}
// Compute the variance of the cluster
LSExpression variance = model.sum();
for (int d = 0; d < nbDimensions; d++) {
LSExpression dimensionVarianceSelector = model.createLambdaFunction(
[&](LSExpression o) {
return model.pow(model.at(coordinatesArray, o, d)
- model.at(centroid, d), 2);
});
LSExpression dimensionVariance = model.sum(cluster,
dimensionVarianceSelector);
variance.addOperand(dimensionVariance);
}
variances[c] = variance;
}
// Minimize the total variance
obj = model.sum(variances.begin(), variances.end());
model.minimize(obj);
model.close();
// Parameterizes the solver.
localsolver.getParam().setTimeLimit(limit);
localsolver.solve();
}
// Writes the solution in a file in the following format:
// - objective value
// - k
// - for each cluster, a line with the elements in the cluster (separated by spaces)
void writeSolution(const string& fileName) {
ofstream outfile;
outfile.exceptions(ofstream::failbit | ofstream::badbit);
outfile.open(fileName.c_str());
outfile << obj.getDoubleValue() << endl;
outfile << k << endl;
for (int c = 0; c < k; c++) {
LSCollection clusterCollection = clusters[c].getCollectionValue();
for (int i = 0; i < clusterCollection.count(); i++) {
outfile << clusterCollection[i] << " ";
}
outfile << endl;
}
}
};
int main(int argc, char** argv) {
if (argc < 2) {
cerr << "Usage: kmeans inputFile [outputFile] [timeLimit] [k value]" << endl;
return 1;
}
const char* instanceFile = argv[1];
const char* solFile = argc > 2 ? argv[2] : NULL;
const char* strTimeLimit = argc > 3 ? argv[3] : "5";
const char* k = argc > 4 ? argv[4] : "2";
try {
Kmeans model(atoi(k));
model.readInstance(instanceFile);
model.solve(atoi(strTimeLimit));
if (solFile != NULL) model.writeSolution(solFile);
return 0;
} catch (const exception& e) {
cerr << "An error occurred: " << e.what() << endl;
return 1;
}
}
- Compilation / Execution (Windows)
- copy %LS_HOME%\bin\localsolvernet.dll .csc Kmeans.cs /reference:localsolvernet.dllKmeans instances\iris.dat
/********** kmeans.cs **********/
using System;
using System.IO;
using System.Globalization;
using localsolver;
public class Kmeans : IDisposable
{
// Data properties
int nbObservations;
int nbDimensions;
int k;
double[][] coordinates;
string[] initialClusters;
// Solver.
LocalSolver localsolver;
// Decisions.
LSExpression[] clusters;
// Objective.
LSExpression obj;
public Kmeans(int k)
{
localsolver = new LocalSolver();
this.k = k;
}
// Reads instance data
public void ReadInstance(string fileName)
{
using (StreamReader input = new StreamReader(fileName))
{
string[] splittedLine = input.ReadLine().Split();
nbObservations = int.Parse(splittedLine[0]);
nbDimensions = int.Parse(splittedLine[1]);
coordinates = new double[nbObservations][];
initialClusters = new string[nbObservations];
for (int o = 0; o < nbObservations; o++)
{
splittedLine = input.ReadLine().Split();
coordinates[o] = new double[nbDimensions];
for (int d = 0; d < nbDimensions; d++)
coordinates[o][d] = double.Parse(splittedLine[d],
CultureInfo.InvariantCulture);
initialClusters[o] = splittedLine[nbDimensions];
}
}
}
public void Dispose()
{
if (localsolver != null)
localsolver.Dispose();
}
public void Solve(int limit)
{
// Declares the optimization model
LSModel model = localsolver.GetModel();
// Set decisions: clusters[c] represents the points in cluster c
clusters = new LSExpression[k];
for (int c = 0; c < k; c++)
clusters[c] = model.Set(nbObservations);
// Each point must be in one cluster and one cluster only
model.Constraint(model.Partition(clusters));
// Coordinates of points
LSExpression coordinatesArray = model.Array(coordinates);
// Compute variances
LSExpression[] variances = new LSExpression[k];
for (int c = 0; c < k; c++)
{
LSExpression cluster = clusters[c];
LSExpression size = model.Count(cluster);
// Compute the centroid of the cluster
LSExpression centroid = model.Array();
for (int d = 0; d < nbDimensions; d++)
{
LSExpression coordinateSelector = model.LambdaFunction(
o => model.At(coordinatesArray, o, model.CreateConstant(d)));
centroid.AddOperand(model.If(size == 0, 0,
model.Sum(cluster, coordinateSelector) / size));
}
// Compute the variance of the cluster
LSExpression variance = model.Sum();
for (int d = 0; d < nbDimensions; d++)
{
LSExpression dimensionVarianceSelector = model.LambdaFunction(
o => model.Pow(model.At(coordinatesArray, o, model.CreateConstant(d))
- model.At(centroid, model.CreateConstant(d)), 2)
);
LSExpression dimensionVariance = model.Sum(cluster,
dimensionVarianceSelector);
variance.AddOperand(dimensionVariance);
}
variances[c] = variance;
}
// Minimize the total variance
obj = model.Sum(variances);
model.Minimize(obj);
model.Close();
// Parameterizes the solver.
localsolver.GetParam().SetTimeLimit(limit);
localsolver.Solve();
}
// Writes the solution in a file in the following format:
// - objective value
// - k
// - for each cluster, a line with the elements in the cluster (separated by spaces)
public void WriteSolution(string fileName)
{
using (StreamWriter output = new StreamWriter(fileName))
{
output.WriteLine(obj.GetDoubleValue());
output.WriteLine(k);
for (int c = 0; c < k; c++)
{
LSCollection clusterCollection = clusters[c].GetCollectionValue();
for (int i = 0; i < clusterCollection.Count(); i++)
output.Write(clusterCollection[i] + " ");
output.WriteLine();
}
output.Close();
}
}
public static void Main(string[] args)
{
if (args.Length < 1)
{
Console.WriteLine("Usage: Kmeans inputFile [outputFile] [timeLimit] [k value]");
Environment.Exit(1);
}
string instanceFile = args[0];
string outputFile = args.Length > 1 ? args[1] : null;
string strTimeLimit = args.Length > 2 ? args[2] : "5";
string k = args.Length > 3 ? args[3] : "2";
using (Kmeans model = new Kmeans(int.Parse(k)))
{
model.ReadInstance(instanceFile);
model.Solve(int.Parse(strTimeLimit));
if (outputFile != null)
{
model.WriteSolution(outputFile);
}
}
}
}
- Compilation / Execution (Windows)
- javac Kmeans.java -cp %LS_HOME%\bin\localsolver.jarjava -cp %LS_HOME%\bin\localsolver.jar;. Kmeans instances\iris.dat
- Compilation / Execution (Linux)
- javac Kmeans.java -cp /opt/localsolver_11_0/bin/localsolver.jarjava -cp /opt/localsolver_11_0/bin/localsolver.jar:. Kmeans instances/iris.dat
/********** Kmeans.java **********/
import java.util.*;
import java.io.*;
import localsolver.*;
public class Kmeans {
// Data properties
private int nbObservations;
private int nbDimensions;
private int k;
private double[][] coordinates;
private String[] initialClusters;
// Solver.
private final LocalSolver localsolver;
// Decisions.
private LSExpression[] clusters;
// Objective.
private LSExpression obj;
private Kmeans(LocalSolver localsolver) {
this.localsolver = localsolver;
}
// Reads instance data
private void readInstance(int k, String fileName) throws IOException {
try (Scanner input = new Scanner(new File(fileName))) {
input.useLocale(Locale.ROOT);
nbObservations = input.nextInt();
nbDimensions = input.nextInt();
this.k = k;
coordinates = new double[nbObservations][nbDimensions];
initialClusters = new String[nbObservations];
for (int o = 0; o < nbObservations; o++) {
for (int d = 0; d < nbDimensions; d++) {
coordinates[o][d] = input.nextDouble();
}
initialClusters[o] = input.next();
}
}
}
private void solve(int limit) {
// Declares the optimization model.
LSModel model = localsolver.getModel();
// Set decisions: clusters[c] represents the points in cluster c
clusters = new LSExpression[k];
for (int c = 0; c < k; c++) {
clusters[c] = model.setVar(nbObservations);
}
// Each point must be in one cluster and one cluster only
model.constraint(model.partition(clusters));
// Coordinates of points
LSExpression coordinatesArray = model.array(coordinates);
// Compute variances
LSExpression[] variances = new LSExpression[k];
for (int c = 0; c < k; c++) {
LSExpression cluster = clusters[c];
LSExpression size = model.count(cluster);
// Compute the centroid of the cluster
LSExpression centroid = model.array();
for (int d = 0; d < nbDimensions; d++) {
LSExpression vExpr = model.createConstant(d);
LSExpression coordinateSelector = model.lambdaFunction(
o -> model.at(coordinatesArray, o, vExpr));
centroid.addOperand(model.iif(model.eq(size, 0), 0,
model.div(model.sum(cluster, coordinateSelector), size)));
}
// Compute the variance of the cluster
LSExpression variance = model.sum();
for (int d = 0; d < nbDimensions; d++) {
LSExpression vExpr = model.createConstant(d);
LSExpression dimensionVarianceSelector = model.lambdaFunction(
o -> model.pow(model.sub(model.at(coordinatesArray, o, vExpr),
model.at(centroid, vExpr)), 2)
);
LSExpression dimensionVariance = model.sum(cluster,
dimensionVarianceSelector);
variance.addOperand(dimensionVariance);
}
variances[c] = variance;
}
// Minimize the total variance
obj = model.sum(variances);
model.minimize(obj);
model.close();
// Parameterizes the solver.
localsolver.getParam().setTimeLimit(limit);
localsolver.solve();
}
// Writes the solution in a file in the following format:
// - objective value
// - k
// - for each cluster, a line with the elements in the cluster (separated by spaces)
private void writeSolution(String fileName) throws IOException {
try (PrintWriter output = new PrintWriter(fileName)) {
output.println(obj.getDoubleValue());
output.println(k);
for (int c = 0; c < k; c++) {
LSCollection clusterCollection = clusters[c].getCollectionValue();
for (int i = 0; i < clusterCollection.count(); i++) {
output.print(clusterCollection.get(i) + " ");
}
output.println();
}
}
}
public static void main(String[] args) {
if (args.length < 1) {
System.err.println("Usage: java Kmeans inputFile [outputFile] [timeLimit] [k value]");
System.exit(1);
}
String instanceFile = args[0];
String outputFile = args.length > 1 ? args[1] : null;
String strTimeLimit = args.length > 2 ? args[2] : "5";
String k = args.length > 3 ? args[3] : "2";
try (LocalSolver localsolver = new LocalSolver()) {
Kmeans model = new Kmeans(localsolver);
model.readInstance(Integer.parseInt(k), instanceFile);
model.solve(Integer.parseInt(strTimeLimit));
if (outputFile != null) {
model.writeSolution(outputFile);
}
} catch (Exception ex) {
System.err.println(ex);
ex.printStackTrace();
System.exit(1);
}
}
}