This page is for an old version of Hexaly Optimizer. We recommend that you update your version and read the documentation for the latest stable release.

Bin packing

Principles learned

  • Create a set decision variable
  • Use a lambda expression to compute a sum on a set
  • Specify a threshold to stop the search after a target is reached

Problem

../_images/binpacking.png

In the bin packing problem, a number of items with known weights must be assigned to bins with uniform capacity. The objective is to minimize the number of bins used such that all items are placed. It is a typical example of an NP-hard problem.

Download the example

Data

The instances provided are the Falkenauer instances from the BPPLIB. The format of the data files is as follows:

  • First line: number of items
  • Second line: capacity of a bin
  • The weight for each item

Program

The model implemented here makes use of set variables. For each bin we define a set which describes the items assigned to that bin. Those sets are constrained to form a partition, which means that an item must be assigned to exactly one bin.

For each bin, the combined weight of the items must be smaller than its capacity. This weight is computed directly using the sum operator on the set: we define a function that takes an item index and returns the associated weight. See our documentation on this topic for details.

The model computes simple lower and upper bounds on the optimal number of bins. It only defines nbMaxBins set variables, and uses lsObjectiveThreshold to stop the search if a solution with nbMinBins bins is reached.

Execution:
localsolver bin_packing.lsp inFileName=instances/t60_00.txt [lsTimeLimit=] [solFileName=]
/********** bin_packing.lsp **********/

use io;

/* Reads instance data. */
function input() {
    local usage = "Usage: localsolver bin_packing.lsp "
        + "inFileName=inputFile [lsTimeLimit=timeLimit]";

    if (inFileName == nil) throw usage;
    local inFile = io.openRead(inFileName);

    nbItems = inFile.readInt();
    binCapacity = inFile.readInt();
    itemWeights[i in 0..nbItems-1] = inFile.readInt();

    nbMinBins = ceil(sum[i in 0..nbItems-1](itemWeights[i])/binCapacity);
    nbMaxBins = min(nbItems, 2 * nbMinBins);
}


/* Declares the optimization model. */
function model() {
    // Set decisions: bins[k] represents the items in bin k
    bins[k in 0..nbMaxBins-1] <- set(nbItems);

    // Each item must be in one bin and one bin only
    constraint partition[k in 0..nbMaxBins-1](bins[k]);
    
    for [k in 0..nbMaxBins-1] {
        // Weight constraint for each bin
        binWeights[k] <- sum(bins[k], i => itemWeights[i]);
        constraint binWeights[k] <= binCapacity;
    
        // Bin k is used if at least one item is in it
        binsUsed[k] <- (count(bins[k]) > 0);
    }
    
    // Count the used bins
    totalBinsUsed <- sum[k in 0..nbMaxBins-1](binsUsed[k]);

    // Minimize the number of used bins
    minimize totalBinsUsed;
}

/* Parameterizes the solver. */
function param() {
    if (lsTimeLimit == nil) lsTimeLimit = 20;  
    if (lsNbThreads == nil) lsNbThreads = 1;
    if (lsTimeBetweenDisplays == nil) lsTimeBetweenDisplays = 1;

    // Stop the search if the lower threshold is reached
    lsObjectiveThreshold = nbMinBins;
}

function output() {
    for[k in 0..nbMaxBins-1] {
        if (count(bins[k].value) > 0) {
            print("Bin weight: ", binWeights[k].value, " | Items: ");
            for[e in bins[k].value]
                print(e + " ");
            println();
        }
    }
}
Execution (Windows)
set PYTHONPATH=%LS_HOME%\bin\python
python bin_packing.py instances\t60_00.txt
Execution (Linux)
export PYTHONPATH=/opt/localsolver_10_5/bin/python
python bin_packing.py instances/t60_00.txt
########## bin_packing.py ##########

import localsolver
import sys
import math

if len(sys.argv) < 2:
    print("Usage: python bin_packing.py inputFile [outputFile] [timeLimit]")
    sys.exit(1)


def read_integers(filename):
    with open(filename) as f:
        return [int(elem) for elem in f.read().split()]


with localsolver.LocalSolver() as ls:

    # Reads instance data
    file_it = iter(read_integers(sys.argv[1]))

    nb_items = int(next(file_it))
    bin_capacity = int(next(file_it))

    item_weights = [int(next(file_it)) for i in range(nb_items)]
    nb_min_bins = int(math.ceil(sum(item_weights)/float(bin_capacity)))
    nb_max_bins = min(nb_items, 2 * nb_min_bins)

    # Declares the optimization model
    model = ls.model

    # Set decisions: bin[k] represents the items in bin k
    bins = [model.set(nb_items) for k in range(nb_max_bins)]

    # Each item must be in one bin and one bin only
    model.constraint(model.partition(bins))

    weight_array = model.array(item_weights)
    weight_selector = model.lambda_function(lambda i: weight_array[i])

    # Weight constraint for each bin
    bin_weights = [model.sum(b, weight_selector) for b in bins]
    for w in bin_weights:
        model.constraint(w <= bin_capacity)

    # Bin k is used if at least one item is in it
    bins_used = [model.count(b) > 0 for b in bins]

    # Count the used bins
    total_bins_used = model.sum(bins_used)

    # Minimize the number of used bins
    model.minimize(total_bins_used)
    model.close()

    # Parameterizes the solver
    if len(sys.argv) >= 4: ls.param.time_limit = int(sys.argv[3])
    else: ls.param.time_limit = 5

    # Stop the search if the lower threshold is reached
    ls.param.set_objective_threshold(0, nb_min_bins)

    ls.solve()

    # Writes the solution in a file
    if len(sys.argv) >= 3:
        with open(sys.argv[2], 'w') as f:
            for k in range(nb_max_bins):
                if bins_used[k].value:
                    f.write("Bin weight: %d | Items: " % bin_weights[k].value)
                    for e in bins[k].value:
                        f.write("%d " % e)
                    f.write("\n")
Compilation / Execution (Windows)
cl /EHsc bin_packing.cpp -I%LS_HOME%\include /link %LS_HOME%\bin\localsolver105.lib
bin_packing instances\t60_00.txt
Compilation / Execution (Linux)
g++ bin_packing.cpp -I/opt/localsolver_10_5/include -llocalsolver105 -lpthread -o bin_packing
./bin_packing instances/t60_00.txt
/********** bin_packing.cpp **********/

#include <iostream>
#include <fstream>
#include <vector>
#include <numeric>
#include <cmath>
#include "localsolver.h"

using namespace localsolver;
using namespace std;

class BinPacking {
private:
    // Number of items
    int nbItems;

    // Capacity of each bin
    int binCapacity;

    // Maximum number of bins
    int nbMaxBins;

    // Minimum number of bins
    int nbMinBins;

    // Weight of each item
    std::vector<lsint> itemWeights;

    // LocalSolver
    LocalSolver localsolver;

    // Decision variables
    std::vector<LSExpression> bins;

    // Weight of each bin in the solution
    std::vector<LSExpression> binWeights;

    // Whether the bin is used in the solution
    std::vector<LSExpression> binsUsed;

    // Objective
    LSExpression totalBinsUsed;

public:
    // Reads instance data.
    void readInstance(const string& fileName) {
        ifstream infile;
        infile.exceptions(ifstream::failbit | ifstream::badbit);
        infile.open(fileName.c_str());

        infile >> nbItems;
        infile >> binCapacity;

        itemWeights.resize(nbItems);
        for (int i = 0; i < nbItems; ++i) {
            infile >> itemWeights[i];
        }

        nbMinBins = ceil(accumulate(itemWeights.begin(), itemWeights.end(), 0.0) / binCapacity);
        nbMaxBins = min(2 * nbMinBins, nbItems);
    }

    void solve(int limit) {
        // Declares the optimization model.
        LSModel model = localsolver.getModel();

        bins.resize(nbMaxBins);
        binWeights.resize(nbMaxBins);
        binsUsed.resize(nbMaxBins);

        // Set decisions: bins[k] represents the items in bin k
        for (int k = 0; k < nbMaxBins; ++k) {
            bins[k] = model.setVar(nbItems);
        }

        // Each item must be in one bin and one bin only
        model.constraint(model.partition(bins.begin(), bins.end()));

        // Create an array and a function to retrieve the item's weight
        LSExpression weightArray = model.array(itemWeights.begin(), itemWeights.end());
        LSExpression weightSelector = model.createLambdaFunction([&](LSExpression i) { return weightArray[i]; });

        for (int k = 0; k < nbMaxBins; ++k) {
            // Weight constraint for each bin
            binWeights[k] = model.sum(bins[k], weightSelector);
            model.constraint(binWeights[k] <= binCapacity);

            // Bin k is used if at least one item is in it
            binsUsed[k] = model.count(bins[k]) > 0;
        }

        // Count the used bins
        totalBinsUsed = model.sum(binsUsed.begin(), binsUsed.end());

        // Minimize the number of used bins
        model.minimize(totalBinsUsed);

        model.close();

        // Parameterizes the solver.
        localsolver.getParam().setTimeLimit(limit);

        // Stop the search if the lower threshold is reached
        localsolver.getParam().setObjectiveThreshold(0, (lsint) nbMinBins);

        localsolver.solve();
    }

    // Writes the solution in a file
    void writeSolution(const string& fileName) {
        ofstream outfile;
        outfile.exceptions(ofstream::failbit | ofstream::badbit);
        outfile.open(fileName.c_str());
        for (int k = 0; k < nbMaxBins; ++k) {
            if (binsUsed[k].getValue()) {
                outfile << "Bin weight: " << binWeights[k].getValue() << " | Items: ";
                LSCollection binCollection = bins[k].getCollectionValue();
                for (int i = 0; i < binCollection.count(); ++i) {
                    outfile << binCollection[i] << " ";
                }
                outfile << endl;
            }
        }
    }
};

int main(int argc, char** argv) {
    if (argc < 2) {
        cerr << "Usage: bin_packing inputFile [outputFile] [timeLimit]" << endl;
        return 1;
    }

    const char* instanceFile = argv[1];
    const char* solFile = argc > 2 ? argv[2] : NULL;
    const char* strTimeLimit = argc > 3 ? argv[3] : "5";

    try {
        BinPacking model;
        model.readInstance(instanceFile);
        model.solve(atoi(strTimeLimit));
        if (solFile != NULL) model.writeSolution(solFile);
        return 0;
     } catch (const exception& e) {
        cerr << "An error occurred: " << e.what() << endl;
        return 1;
    }
}
Compilation / Execution (Windows)
copy %LS_HOME%\bin\localsolvernet.dll .
csc BinPacking.cs /reference:localsolvernet.dll
BinPacking instances\t60_00.txt
/********** BinPacking.cs **********/

using System;
using System.IO;
using System.Linq;
using localsolver;

public class BinPacking : IDisposable
{
    // Number of items
    int nbItems;

    // Capacity of each bin
    int binCapacity;

    // Maximum number of bins
    int nbMaxBins;

    // Minimum number of bins
    int nbMinBins;

    // Weight of each item
    long[] itemWeights;

    // LocalSolver
    LocalSolver localsolver;

    // Decision variables
    LSExpression[] bins;

    // Weight of each bin in the solution
    LSExpression[] binWeights;

    // Whether the bin is used in the solution
    LSExpression[] binsUsed;

    // Objective
    LSExpression totalBinsUsed;

    public BinPacking()
    {
        localsolver = new LocalSolver();
    }

    // Reads instance data. 
    void ReadInstance(string fileName)
    {
        using (StreamReader input = new StreamReader(fileName))
        {
            nbItems = int.Parse(input.ReadLine());
            binCapacity = int.Parse(input.ReadLine());

            itemWeights = new long[nbItems];
            for (int i = 0; i < nbItems; i++) {
                itemWeights[i] = int.Parse(input.ReadLine());
            }

            nbMinBins = (int) Math.Ceiling((double) itemWeights.Sum() / binCapacity);
            nbMaxBins = Math.Min(2 * nbMinBins, nbItems);
        }
    }

    public void Dispose()
    {
        if (localsolver != null)
            localsolver.Dispose();
    }

    void Solve(int limit)
    {
        // Declares the optimization model.
        LSModel model = localsolver.GetModel();

        bins = new LSExpression[nbMaxBins]; 
        binWeights = new LSExpression[nbMaxBins]; 
        binsUsed = new LSExpression[nbMaxBins]; 

        // Set decisions: bin[k] represents the items in bin k
        for (int k = 0; k < nbMaxBins; ++k) {
            bins[k] = model.Set(nbItems);
        }

        // Each item must be in one bin and one bin only
        model.Constraint(model.Partition(bins));

        // Create an array and a function to retrieve the item's weight
        LSExpression weightArray = model.Array(itemWeights);
        LSExpression weightSelector = model.LambdaFunction(i => weightArray[i]);

        for (int k = 0; k < nbMaxBins; ++k) {
            // Weight constraint for each bin
            binWeights[k] = model.Sum(bins[k], weightSelector);
            model.Constraint(binWeights[k] <= binCapacity);

            // Bin k is used if at least one item is in it
            binsUsed[k] = model.Count(bins[k]) > 0;
        }

        // Count the used bins
        totalBinsUsed = model.Sum(binsUsed);

        // Minimize the number of used bins
        model.Minimize(totalBinsUsed);

        model.Close();

        // Parameterizes the solver.
        localsolver.GetParam().SetTimeLimit(limit);

        // Stop the search if the lower threshold is reached
        localsolver.GetParam().SetObjectiveThreshold(0, nbMinBins);

        localsolver.Solve();
    }

    // Writes the solution in a file
    void WriteSolution(string fileName)
    {
        using (StreamWriter output = new StreamWriter(fileName))
        {
            for (int k = 0; k < nbMaxBins; ++k) {
                if (binsUsed[k].GetValue() != 0) {
                    output.Write("Bin weight: " + binWeights[k].GetValue() + " | Items: ");
                    LSCollection binCollection = bins[k].GetCollectionValue();
                    for (int i = 0; i < binCollection.Count(); ++i) {
                        output.Write(binCollection[i] + " ");
                    }
                    output.WriteLine();
                }
            }
        }
    }

    public static void Main(string[] args)
    {
        if (args.Length < 1)
        {
            Console.WriteLine("Usage: BinPacking inputFile [solFile] [timeLimit]");
            Environment.Exit(1);
        }
        string instanceFile = args[0];
        string outputFile = args.Length > 1 ? args[1] : null;
        string strTimeLimit = args.Length > 2 ? args[2] : "5";

        using (BinPacking model = new BinPacking())
        {
            model.ReadInstance(instanceFile);
            model.Solve(int.Parse(strTimeLimit));
            if (outputFile != null)
                model.WriteSolution(outputFile);
        }
    }
}
Compilation / Execution (Windows)
javac BinPacking.java -cp %LS_HOME%\bin\localsolver.jar
java -cp %LS_HOME%\bin\localsolver.jar;. BinPacking instances\t60_00.txt
Compilation / Execution (Linux)
javac BinPacking.java -cp /opt/localsolver_10_5/bin/localsolver.jar
java -cp /opt/localsolver_10_5/bin/localsolver.jar:. BinPacking instances/t60_00.txt
/********** BinPacking.java **********/

import java.util.*;
import java.io.*;
import localsolver.*;

public class BinPacking {
    // Number of items
    private int nbItems;

    // Capacity of each bin
    private int binCapacity;

    // Maximum number of bins
    private int nbMaxBins;

    // Minimum number of bins
    private int nbMinBins;

    // Weight of each item
    private long[] itemWeights;

    // LocalSolver
    private final LocalSolver localsolver;

    // Decision variables
    private LSExpression[] bins;

    // Weight of each bin in the solution
    private LSExpression[] binWeights;

    // Whether the bin is used in the solution
    private LSExpression[] binsUsed;

    // Objective
    private LSExpression totalBinsUsed;

    private BinPacking(LocalSolver localsolver) {
        this.localsolver = localsolver;
    }

    // Reads instance data.
    private void readInstance(String fileName) throws IOException {
        try (Scanner input = new Scanner(new File(fileName))) {
            nbItems = input.nextInt();
            binCapacity = input.nextInt();

            itemWeights = new long[nbItems];
            for (int i = 0; i < nbItems; i++) {
                itemWeights[i] = input.nextInt();
            }

            long sumWeights = 0;
            for (int i = 0; i < nbItems; i++) {
                sumWeights += itemWeights[i];
            }

            nbMinBins = (int) Math.ceil((double) sumWeights / binCapacity);
            nbMaxBins = Math.min(2 * nbMinBins, nbItems);
        }
    }

    private void solve(int limit) {
        // Declares the optimization model.
        LSModel model = localsolver.getModel();

        bins = new LSExpression[nbMaxBins];
        binWeights = new LSExpression[nbMaxBins];
        binsUsed = new LSExpression[nbMaxBins];

        // Set decisions: bins[k] represents the items in bin k
        for (int k = 0; k < nbMaxBins; ++k) {
            bins[k] = model.setVar(nbItems);
        }

        // Each item must be in one bin and one bin only
        model.constraint(model.partition(bins));

        // Create an array and a lambda function to retrieve the item's weight
        LSExpression weightArray = model.array(itemWeights);
        LSExpression weightSelector = model.lambdaFunction(i -> model.at(weightArray, i));

        for (int k = 0; k < nbMaxBins; ++k) {
            // Weight constraint for each bin
            binWeights[k] = model.sum(bins[k], weightSelector);
            model.constraint(model.leq(binWeights[k], binCapacity));

            // Bin k is used if at least one item is in it
            binsUsed[k] = model.gt(model.count(bins[k]), 0);
        }

        // Count the used bins
        totalBinsUsed = model.sum(binsUsed);

        // Minimize the number of used bins
        model.minimize(totalBinsUsed);
        model.close();

        // Parameterizes the solver.
        localsolver.getParam().setTimeLimit(limit);

        // Stop the search if the lower threshold is reached
        localsolver.getParam().setObjectiveThreshold(0, nbMinBins);

        localsolver.solve();
    }

    // Writes the solution in a file
    private void writeSolution(String fileName) throws IOException {
        try (PrintWriter output = new PrintWriter(fileName)) {
            for (int k = 0; k < nbMaxBins; ++k) {
                if (binsUsed[k].getValue() != 0) {
                    output.print("Bin weight: " + binWeights[k].getValue() + " | Items: ");
                    LSCollection binCollection = bins[k].getCollectionValue();
                    for (int i = 0; i < binCollection.count(); ++i) {
                        output.print(binCollection.get(i) + " ");
                    }
                    output.println();
                }
            }
        }
    }

    public static void main(String[] args) {
        if (args.length < 1) {
            System.err.println("Usage: java BinPacking inputFile [outputFile] [timeLimit]");
            System.exit(1);
        }

        String instanceFile = args[0];
        String outputFile = args.length > 1 ? args[1] : null;
        String strTimeLimit = args.length > 2 ? args[2] : "20";

        try (LocalSolver localsolver = new LocalSolver()) {
            BinPacking model = new BinPacking(localsolver);
            model.readInstance(instanceFile);
            model.solve(Integer.parseInt(strTimeLimit));
            if (outputFile != null) {
                model.writeSolution(outputFile);
            }
        } catch (Exception ex) {
            System.err.println(ex);
            ex.printStackTrace();
            System.exit(1);
        }
    }
}