Traveling Salesman (TSP)ΒΆ
Principles learnedΒΆ
- Add a list decision variable
- Access the list elements with an βatβ operator
- Constrain the number of elements in the list with operator βcountβ
- Access a multi-dimensional array with an βatβ operator
- Get the value of a list variable
ProblemΒΆ
The traveling salesman problem is defined as follows: given a set of n nodes and distances for each pair of nodes, find a roundtrip of minimal total length visiting each node exactly once. The distance from node i to node j and the distance from node j to node i may be different.
Download the exampleDataΒΆ
The instances provided come from the TSPLib asymmetric TSP database. They follow the TSPLib explicit format. The number of cities is defined after the keyword βDIMENSION:β and the full distance matrix is defined after the keyword βEDGE_WEIGHT_SECTIONβ.
ProgramΒΆ
This LocalSolver model is based on a list variable constrained to contain all
cities. The ith element of the list variable corresponds to the index of the ith
city visited in the tour. From this list we can directly obtain the distance
between each pair of consecutive cities in the list plus the closing arc (from
last city to first city). Note that we use here the 2-dimensional βatβ
operator z <- A[x][y]
defining z as the
element (x,y) of matrix A, where x and y are integer expressions. This operator
allows defining virtually any non-linear relationship between three variables
x,y,z. We also use a function to
apply the sum
operator over the whole range of cities.
You can find at the end of this page a table with the known optimal results on the asymmetric TSPLib database. On average, LocalSolver 9.0 reaches a gap of 0.8% after 1 minute.
- Execution:
- localsolver tsp.lsp inFileName=instances/br17.atsp [lsTimeLimit=] [solFileName=]
/********** tsp.lsp **********/
use io;
/* Reads instance data. */
function input() {
local usage = "Usage: localsolver tsp.lsp "
+ "inFileName=inputFile [lsTimeLimit=timeLimit]";
if (inFileName == nil) throw usage;
local inFile = io.openRead(inFileName);
// The input files follow the TSPLib "explicit" format.
while (true) {
local str = inFile.readln();
if (str.startsWith("DIMENSION:")) {
local dim = str.trim().split(":")[1];
nbCities = dim.toInt();
} else if (str.startsWith("EDGE_WEIGHT_SECTION")) {
break;
}
}
// Distance from i to j
distanceWeight[0..nbCities - 1][0..nbCities - 1] = inFile.readInt();
}
/* Declares the optimization model. */
function model() {
// A list variable: cities[i] is the index of the ith city in the tour
cities <- list(nbCities);
// All cities must be visited
constraint count(cities) == nbCities;
// Minimize the total distance
obj <- sum(1..nbCities-1, i => distanceWeight[cities[i-1]][cities[i]])
+ distanceWeight[cities[nbCities-1]][cities[0]];
minimize obj;
}
/* Parameterizes the solver. */
function param() {
if (lsTimeLimit == nil) lsTimeLimit = 5;
}
/* Writes the solution in a file */
function output() {
if (solFileName == nil) return;
local solFile = io.openWrite(solFileName);
solFile.println(obj.value);
for [c in cities.value]
solFile.print(c, " ");
solFile.println();
}
- Execution (Windows)
- set PYTHONPATH=%LS_HOME%\bin\pythonpython tsp.py instances\br17.atsp
- Execution (Linux)
- export PYTHONPATH=/opt/localsolver_10_5/bin/pythonpython tsp.py instances/br17.atsp
########## tsp.py ##########
import localsolver
import sys
if len(sys.argv) < 2:
print("Usage: python tsp.py inputFile [outputFile] [timeLimit]")
sys.exit(1)
def read_elem(filename):
with open(filename) as f:
return [str(elem) for elem in f.read().split()]
with localsolver.LocalSolver() as ls:
#
# Reads instance data
#
file_it = iter(read_elem(sys.argv[1]))
# The input files follow the TSPLib "explicit" format.
for pch in file_it:
if pch == "DIMENSION:":
nb_cities = int(next(file_it))
if pch == "EDGE_WEIGHT_SECTION":
break
# Distance from i to j
distance_weight = [[int(next(file_it)) for i in range(nb_cities)] for j in range(nb_cities)]
#
# Declares the optimization model
#
model = ls.model
# A list variable: cities[i] is the index of the ith city in the tour
cities = model.list(nb_cities)
# All cities must be visited
model.constraint(model.count(cities) == nb_cities)
# Create a LocalSolver array for the distance matrix in order to be able to
# access it with "at" operators.
distance_array = model.array(distance_weight)
# Minimize the total distance
dist_selector = model.lambda_function(lambda i: model.at(distance_array, cities[i - 1], cities[i]))
obj = (model.sum(model.range(1, nb_cities), dist_selector)
+ model.at(distance_array, cities[nb_cities - 1], cities[0]))
model.minimize(obj)
model.close()
#
# Parameterizes the solver
#
if len(sys.argv) >= 4:
ls.param.time_limit = int(sys.argv[3])
else:
ls.param.time_limit = 5
ls.solve()
#
# Writes the solution in a file
#
if len(sys.argv) >= 3:
# Writes the solution in a file
with open(sys.argv[2], 'w') as f:
f.write("%d\n" % obj.value)
for c in cities.value:
f.write("%d " % c)
f.write("\n")
- Compilation / Execution (Windows)
- cl /EHsc tsp.cpp -I%LS_HOME%\include /link %LS_HOME%\bin\localsolver105.libtsp instances\br17.atsp
- Compilation / Execution (Linux)
- g++ tsp.cpp -I/opt/localsolver_10_5/include -llocalsolver105 -lpthread -o tsp./tsp instances/br17.atsp
/********** tsp.cpp **********/
#include <iostream>
#include <fstream>
#include <vector>
#include <string.h>
#include "localsolver.h"
using namespace localsolver;
using namespace std;
class Tsp {
public:
// Number of cities
int nbCities;
// Vector of distance between two cities
vector<vector<lsint> > distanceWeight;
// LocalSolver.
LocalSolver localsolver;
// Decision variables.
LSExpression cities;
// Objective
LSExpression obj;
/* Reads instance data. */
void readInstance(const string& fileName) {
ifstream infile;
infile.exceptions(ifstream::failbit | ifstream::badbit);
infile.open(fileName.c_str());
// The input files follow the TSPLib "explicit" format.
string str;
char * pch;
char* line;
while (true) {
getline(infile, str);
line = strdup(str.c_str());
pch = strtok(line, " :");
if (strcmp(pch, "DIMENSION") == 0) {
getline(infile, str);
line = strdup(str.c_str());
pch = strtok(NULL, " :");
nbCities = atoi(pch);
} else if (strcmp(pch, "EDGE_WEIGHT_SECTION") == 0) {
break;
}
}
// Distance from i to j
distanceWeight.resize(nbCities);
for (int i = 0; i < nbCities; i++) {
distanceWeight[i].resize(nbCities);
for (int j = 0; j < nbCities; j++) {
infile >> distanceWeight[i][j];
}
}
}
void solve(int limit) {
// Declares the optimization model.
LSModel model = localsolver.getModel();
// A list variable: cities[i] is the index of the ith city in the tour
cities = model.listVar(nbCities);
// All cities must be visited
model.constraint(model.count(cities) == nbCities);
// Create a LocalSolver array for the distance matrix in order to be able to
// access it with "at" operators.
LSExpression distanceArray = model.array();
for (int i = 0; i < nbCities; i++) {
LSExpression row = model.array(distanceWeight[i].begin(), distanceWeight[i].end());
distanceArray.addOperand(row);
}
// Minimize the total distance
LSExpression distSelector = model.createLambdaFunction([&](LSExpression i) { return model.at(distanceArray, cities[i-1], cities[i]); });
obj = model.sum(model.range(1, nbCities), distSelector) + model.at(distanceArray, cities[nbCities-1], cities[0]);
model.minimize(obj);
model.close();
// Parameterizes the solver.
localsolver.getParam().setTimeLimit(limit);
localsolver.solve();
}
// Writes the solution in a file
void writeSolution(const string& fileName) {
ofstream outfile;
outfile.exceptions(ofstream::failbit | ofstream::badbit);
outfile.open(fileName.c_str());
outfile << obj.getValue() << endl;
LSCollection citiesCollection = cities.getCollectionValue();
for (int i = 0; i < nbCities; i++) {
outfile << citiesCollection[i] << " ";
}
outfile << endl;
}
};
int main(int argc, char** argv) {
if (argc < 2) {
cerr << "Usage: tsp inputFile [outputFile] [timeLimit]" << endl;
return 1;
}
const char* instanceFile = argv[1];
const char* solFile = argc > 2 ? argv[2] : NULL;
const char* strTimeLimit = argc > 3 ? argv[3] : "5";
try {
Tsp model;
model.readInstance(instanceFile);
model.solve(atoi(strTimeLimit));
if (solFile != NULL) model.writeSolution(solFile);
return 0;
} catch (const exception& e) {
cerr << "An error occurred: " << e.what() << endl;
return 1;
}
}
- Compilation / Execution (Windows)
- copy %LS_HOME%\bin\localsolvernet.dll .csc Tsp.cs /reference:localsolvernet.dllTsp instances\br17.atsp
/********** Tsp.cs **********/
using System;
using System.IO;
using localsolver;
public class Tsp : IDisposable
{
// Number of cities
int nbCities;
// Vector of distance between two cities
long[][] distanceWeight;
// Solver.
LocalSolver localsolver;
// Decision variables
LSExpression cities;
// Objective
LSExpression obj;
public Tsp()
{
localsolver = new LocalSolver();
}
// Reads instance data
void ReadInstance(string fileName)
{
using (StreamReader input = new StreamReader(fileName))
{
// The input files follow the TSPLib "explicit" format.
string line;
while ((line = input.ReadLine()) != null)
{
string[] splitted = line.Split(':');
if (splitted[0].Contains("DIMENSION"))
nbCities = int.Parse(splitted[1]);
else if (splitted[0].Contains("EDGE_WEIGHT_SECTION"))
break;
}
string[] matrixText = input.ReadToEnd().Split((char[])null, StringSplitOptions.RemoveEmptyEntries);
distanceWeight = new long[nbCities][];
for (int i = 0; i < nbCities; i++)
{
distanceWeight[i] = new long[nbCities];
for (int j = 0; j < nbCities; j++)
distanceWeight[i][j] = long.Parse(matrixText[i * nbCities + j]);
}
}
}
public void Dispose()
{
if (localsolver != null)
localsolver.Dispose();
}
void Solve(int limit)
{
// Declares the optimization model
LSModel model = localsolver.GetModel();
// A list variable: cities[i] is the index of the ith city in the tour
cities = model.List(nbCities);
// All cities must be visited
model.Constraint(model.Count(cities) == nbCities);
// Create a LocalSolver array for the distance matrix in order to be able to
// access it with "at" operators.
LSExpression distanceArray = model.Array(distanceWeight);
// Minimize the total distance
LSExpression distSelector = model.LambdaFunction(i => distanceArray[cities[i - 1], cities[i]]);
obj = model.Sum(model.Range(1, nbCities), distSelector) + distanceArray[cities[nbCities - 1], cities[0]];
model.Minimize(obj);
model.Close();
// Parameterizes the solver.
localsolver.GetParam().SetTimeLimit(limit);
localsolver.Solve();
}
// Writes the solution in a file
void WriteSolution(string fileName)
{
using (StreamWriter output = new StreamWriter(fileName))
{
output.WriteLine(obj.GetValue());
LSCollection citiesCollection = cities.GetCollectionValue();
for (int i = 0; i < nbCities; i++)
output.Write(citiesCollection.Get(i) + " ");
output.WriteLine();
}
}
public static void Main(string[] args)
{
if (args.Length < 1)
{
Console.WriteLine("Usage: Tsp inputFile [solFile] [timeLimit]");
Environment.Exit(1);
}
string instanceFile = args[0];
string outputFile = args.Length > 1 ? args[1] : null;
string strTimeLimit = args.Length > 2 ? args[2] : "300";
using (Tsp model = new Tsp())
{
model.ReadInstance(instanceFile);
model.Solve(int.Parse(strTimeLimit));
if (outputFile != null)
model.WriteSolution(outputFile);
}
}
}
- Compilation / Execution (Windows)
- javac Tsp.java -cp %LS_HOME%\bin\localsolver.jarjava -cp %LS_HOME%\bin\localsolver.jar;. Tsp instances\br17.atsp
- Compilation / Execution (Linux)
- javac Tsp.java -cp /opt/localsolver_10_5/bin/localsolver.jarjava -cp /opt/localsolver_10_5/bin/localsolver.jar:. Tsp instances/br17.atsp
/********** Tsp.java **********/
import java.util.*;
import java.io.*;
import localsolver.*;
public class Tsp {
// Number of cities
private int nbCities;
// Vector of distance between two cities
private long[][] distanceWeight;
// LocalSolver.
private final LocalSolver localsolver;
// Decision variables.
private LSExpression cities;
// Objective
private LSExpression obj;
private Tsp(LocalSolver localsolver) {
this.localsolver = localsolver;
}
// Reads instance data.
private void readInstance(String fileName) throws IOException {
try (Scanner input = new Scanner(new File(fileName))) {
// The input files follow the TSPLib "explicit" format.
String str = new String();
String[] pch = new String[2];
int i = 0;
while (true) {
str = input.nextLine();
pch = str.split(":");
if (pch[0].compareTo("DIMENSION")==0) {
nbCities = Integer.parseInt(pch[1].trim());
System.out.println("Number of cities = " + nbCities);
} else if (pch[0].compareTo("EDGE_WEIGHT_SECTION")==0) {
break;
}
}
// Distance from i to j
distanceWeight = new long[nbCities][nbCities];
for (i = 0; i < nbCities; i++) {
for (int j = 0; j < nbCities; j++) {
distanceWeight[i][j] = input.nextInt();
}
}
}
}
private void solve(int limit) {
// Declares the optimization model.
LSModel model = localsolver.getModel();
// A list variable: cities[i] is the index of the ith city in the tour
cities = model.listVar(nbCities);
// All cities must be visited
model.constraint(model.eq(model.count(cities), nbCities));
// Create a LocalSolver array for the distance matrix in order to be able to
// access it with "at" operators.
LSExpression distanceArray = model.array(distanceWeight);
// Minimize the total distance
LSExpression distSelector = model.lambdaFunction(i -> model.at(distanceArray,
model.at(cities, model.sub(i, 1)),
model.at(cities, i)));
obj = model.sum(
model.sum(model.range(1, nbCities), distSelector),
model.at(distanceArray, model.at(cities, nbCities - 1), model.at(cities, 0)));
model.minimize(obj);
model.close();
// Parameterizes the solver.
localsolver.getParam().setTimeLimit(limit);
localsolver.solve();
}
// Writes the solution in a file
void writeSolution(String fileName) throws IOException {
try (PrintWriter output = new PrintWriter(new FileWriter(fileName))) {
output.println(obj.getValue());
LSCollection citiesCollection = cities.getCollectionValue();
for (int i = 0; i < nbCities; i++) {
output.print(citiesCollection.get(i) + " ");
}
output.println();
}
}
public static void main(String[] args) {
if (args.length < 1) {
System.err.println("Usage: java Tsp inputFile [outputFile] [timeLimit]");
System.exit(1);
}
String instanceFile = args[0];
String outputFile = args.length > 1 ? args[1] : null;
String strTimeLimit = args.length > 2 ? args[2] : "5";
try (LocalSolver localsolver = new LocalSolver()) {
Tsp model = new Tsp(localsolver);
model.readInstance(instanceFile);
model.solve(Integer.parseInt(strTimeLimit));
if (outputFile != null) {
model.writeSolution(outputFile);
}
} catch(Exception ex) {
System.err.println(ex);
ex.printStackTrace();
System.exit(1);
}
}
}
Known optimal solutionsΒΆ
The known optimal solutions of the asymmetric instances of the TSPLib are listed below:
Instance | Optimum |
---|---|
br17 | 39 |
ft53 | 6905 |
ft70 | 38673 |
ftv33 | 1286 |
ftv35 | 1473 |
ftv38 | 1530 |
ftv44 | 1613 |
ftv47 | 1776 |
ftv55 | 1608 |
ftv64 | 1839 |
ftv70 | 1950 |
ftv170 | 2755 |
kro124 | 36230 |
p43 | 5620 |
rbg323 | 1326 |
rbg358 | 1163 |
rbg403 | 2465 |
rbg443 | 2720 |
ry48p | 14422 |