Portfolio Selection Optimization Problem
Problem
In the Portfolio Selection Optimization Problem, we must invest a portfolio among a set of stocks. The return for each stock and the risk covariance matrix are known. The problem consists in deciding what part of the portfolio to invest in each stock. We must use the whole portfolio and reach a given expected profit. The objective of the problem is to minimize the risk associated with the chosen investments. This problem is a simplification of the Markowitz Portfolio Selection Optimization Problem.
Principles learned
- Add float decision variables to model the proportion of the portfolio invested in each stock
- Use non-linear operators to compute the risk
- Learn about Hexaly Optimizer’s modeling style: distinguish decision variables from intermediate expressions
Data
The format of the data files is as follows:
- First line: expected profit (in percentage of the portfolio)
- Second line: number of stocks
- Next lines: covariance matrix representing the balance risk for each pair of stocks
- Last line: for each stock, the variation of its price
Program
The Hexaly model for the Portfolio Selection Optimization Problem uses floating decision variables representing the proportion of the portfolio invested in each stock. Since we must invest the whole portfolio, we constrain the sum of these proportions to be equal to 1.
The portfolio’s return is the weighted sum of all the stocks’ profits, where the weights are the proportion of the portfolio dedicated to each stock. We constrain it to be superior or equal to the expected profit.
The objective of the problem consists in minimizing the risk. The portfolio risk is a convex quadratic function, obtained by summing for each stock pair the product between the proportions invested and the corresponding covariance.
- Execution
-
hexaly portfolio.hxm inFileName=instances/small_01.txt [outFileName=] [hxTimeLimit=]
use io;
use random;
/* Read instance data */
function input() {
local usage = "Usage: hexaly portfolio.hxm inFileName=instanceFile"
+ " [outFileName=outputFile] [hxTimeLimit=timeLimit]";
if (inFileName == nil) throw usage;
inFile = io.openRead(inFileName);
// Expected profit, in percentage of the portfolio
expectedProfit = inFile.readDouble();
// Number of stocks
nbStocks = inFile.readInt();
// Covariance among the stocks
sigmaStocks[s in 0...nbStocks][t in 0...nbStocks] = inFile.readDouble();
// Variation of the price of each stock
deltaStock[s in 0...nbStocks] = inFile.readDouble();
inFile.close();
}
/* Declare the optimization model */
function model() {
// Proportion of the portfolio invested in each stock
portfolioStock[s in 0...nbStocks] <- float(0, 1);
// Risk of the portfolio
risk <- sum[s in 0...nbStocks][t in 0...nbStocks](portfolioStock[s] *
portfolioStock[t] * sigmaStocks[s][t]);
// Return of the portfolio in percentage
profit <- sum[s in 0...nbStocks](portfolioStock[s] * deltaStock[s]);
// All the portfolio is used
constraint sum[s in 0...nbStocks](portfolioStock[s]) == 1.0;
// The profit is at least the expected profit
constraint profit >= expectedProfit;
// Minimize the risk
minimize risk;
}
/* Parameterize the solver */
function param() {
if (hxTimeLimit == nil) hxTimeLimit = 60;
}
/* Write the solution in a file with the following format:
* - for each stock, the proportion of the porfolio invested
- the final profit in percentage of the portfolio */
function output() {
if (outFileName != nil) {
outFile = io.openWrite(outFileName);
println("Solution written in file ", outFileName);
for [s in 0...nbStocks] {
local proportion = portfolioStock[s].value;
outFile.println("Stock ", s, ": ", round(proportion * 1000) / 10, "%");
}
outFile.println("Profit: " + profit.value + "%");
}
}
- Execution (Windows)
-
set PYTHONPATH=%HX_HOME%\bin\pythonpython portfolio.py instances\small_01.txt
- Execution (Linux)
-
export PYTHONPATH=/opt/hexaly_13_0/bin/pythonpython portfolio.py instances/small_01.txt
from re import S
import hexaly.optimizer
import sys
def read_instance(filename):
with open(filename) as f:
lines = f.readlines()
first_line = lines[0].split()
# Expected profit, in percentage of the portfolio
expected_profit = float(first_line[0])
second_line = lines[2].split()
# Number of stocks
nb_stocks = int(second_line[0])
# Covariance among the stocks
sigma_stocks = [[0 for i in range(nb_stocks)] for j in range(nb_stocks)]
for s in range(nb_stocks):
line = lines[s+4].split()
for t in range(nb_stocks):
sigma_stocks[s][t] = float(line[t])
# Variation of the price of each stock
delta_stock = [0 for i in range(nb_stocks)]
line = lines[nb_stocks+5].split()
for s in range(nb_stocks):
delta_stock[s] = float(line[s])
print(delta_stock[s])
return expected_profit, nb_stocks, sigma_stocks, delta_stock
def main(instance_file, output_file, time_limit):
expected_profit, nb_stocks, sigma_stocks, delta_stock = read_instance(
instance_file)
with hexaly.optimizer.HexalyOptimizer() as optimizer:
#
# Declare the optimization model
#
model = optimizer.model
# Proportion of the portfolio invested in each stock
portfolio_stock = [model.float(0, 1) for s in range(nb_stocks)]
# Risk of the portfolio
risk = model.sum(portfolio_stock[s] * portfolio_stock[t] * sigma_stocks[s][t]
for t in range(nb_stocks) for s in range(nb_stocks))
# Return of the portfolio in percentage
profit = model.sum(portfolio_stock[s] * delta_stock[s]
for s in range(nb_stocks))
# All the portfolio is used
model.constraint(
model.sum(portfolio_stock[s] for s in range(nb_stocks)) == 1.0)
# The profit is at least the expected profit
model.constraint(profit >= expected_profit)
# Minimize the risk
model.minimize(risk)
model.close()
# Parameterize the optimizer
optimizer.param.time_limit = time_limit
optimizer.solve()
# Write the solution in a file with the following format:
# - for each stock, the proportion of the porfolio invested
# - the final profit in percentage of the portfolio
if output_file != None:
with open(output_file, "w") as f:
print("Solution written in file", output_file)
for s in range(nb_stocks):
proportion = portfolio_stock[s].value
f.write("Stock " + str(s+1) + ": " + str(round(proportion * 100, 1))
+ "%" + "\n")
f.write("Profit: " + str(round(profit.value, 4)) + "%")
if __name__ == '__main__':
if len(sys.argv) < 2:
print(
"Usage: python portfolio.py instance_file [output_file] [time_limit]")
sys.exit(1)
instance_file = sys.argv[1]
output_file = sys.argv[2] if len(sys.argv) >= 3 else None
time_limit = int(sys.argv[3]) if len(sys.argv) >= 4 else 60
main(instance_file, output_file, time_limit)
- Compilation / Execution (Windows)
-
cl /EHsc portfolio.cpp -I%HX_HOME%\include /link %HX_HOME%\bin\hexaly130.libportfolio instances\small_01.txt
- Compilation / Execution (Linux)
-
g++ portfolio.cpp -I/opt/hexaly_13_0/include -lhexaly130 -lpthread -o portfolio./portfolio instances/small_01.txt
#include "optimizer/hexalyoptimizer.h"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <limits>
#include <numeric>
#include <vector>
using namespace hexaly;
class Portfolio {
private:
// Expected profit, in percentage of the portfolio
float expectedProfit;
// Number of stocks
int nbStocks;
// Covariance among the stocks
std::vector<std::vector<float>> sigmaStocks;
// Variation of the price of each stock
std::vector<float> deltaStock;
// Hexaly Optimizer
HexalyOptimizer optimizer;
// Proportion of the portfolio invested in each stock
std::vector<HxExpression> portfolioStock;
// Return of the portfolio in percentage
HxExpression profit;
public:
Portfolio() : optimizer() {}
void readInstance(const std::string &fileName) {
std::ifstream infile;
infile.exceptions(std::ifstream::failbit | std::ifstream::badbit);
infile.open(fileName.c_str());
infile >> expectedProfit;
infile >> nbStocks;
for (int s = 0; s < nbStocks; s++) {
sigmaStocks.push_back(std::vector<float>(nbStocks, 0.0));
for (int t = 0; t < nbStocks; t++) {
infile >> sigmaStocks[s][t];
}
}
deltaStock = std::vector<float>(nbStocks, 0.0);
for (int s = 0; s < nbStocks; s++) {
infile >> deltaStock[s];
deltaStock[s] = deltaStock[s];
}
infile.close();
}
void solve(int timeLimit) {
// Declare the optimization model
HxModel model = optimizer.getModel();
// Proportion of the portfolio invested in each stock
portfolioStock.resize(nbStocks);
for (int s = 0; s < nbStocks; s++)
portfolioStock[s] = model.floatVar(0.0, 1.0);
// Risk of the portfolio
HxExpression risk = model.sum();
for (int s = 0; s < nbStocks; s++) {
for (int t = 0; t < nbStocks; t++) {
risk.addOperand(portfolioStock[s] * portfolioStock[t] * sigmaStocks[s][t]);
}
}
// Return of the portfolio in percentage
profit = model.sum();
for (int s = 0; s < nbStocks; s++) {
profit.addOperand(portfolioStock[s] * deltaStock[s]);
}
// All the portfolio is used
model.constraint(model.sum(portfolioStock.begin(), portfolioStock.end()) == 1.0);
// The profit is at least the expected profit
model.constraint(profit >= expectedProfit);
// Minimize the risk
model.minimize(risk);
model.close();
// Parameterize the optimizer
optimizer.getParam().setTimeLimit(timeLimit);
optimizer.solve();
}
/* Write the solution in a file with the following format:
- for each stock, the proportion of the porfolio invested
- the final profit in percentage of the portfolio */
void writeSolution(const std::string &fileName) {
std::ofstream outfile(fileName.c_str());
if (!outfile.is_open()) {
std::cerr << "File " << fileName << " cannot be opened." << std::endl;
exit(1);
}
std::cout << "Solution written in file " << fileName << std::endl;
for (unsigned int s = 0; s < nbStocks; ++s) {
float proportion = portfolioStock[s].getDoubleValue();
outfile << "Stock " << s + 1 << ": " << round(proportion * 1000) / 10 << "%" << std::endl;
}
outfile << "Profit: " << profit.getDoubleValue() << "%" << std::endl;
outfile.close();
}
};
int main(int argc, char **argv) {
if (argc < 2) {
std::cout << "Usage: portfolio instanceFile [outputFile] [timeLimit]" << std::endl;
exit(1);
}
const char *instanceFile = argv[1];
const char *outputFile = argc > 2 ? argv[2] : NULL;
const char *strTimeLimit = argc > 3 ? argv[3] : "60";
Portfolio model;
try {
model.readInstance(instanceFile);
const int timeLimit = atoi(strTimeLimit);
model.solve(timeLimit);
if (outputFile != NULL)
model.writeSolution(outputFile);
return 0;
} catch (const std::exception &e) {
std::cerr << "An error occurred: " << e.what() << std::endl;
return 1;
}
}
- Compilation / Execution (Windows)
-
copy %HX_HOME%\bin\Hexaly.NET.dll .csc Portfolio.cs /reference:Hexaly.NET.dllPortfolio instances\small_01.txt
using System;
using System.IO;
using System.Linq;
using System.Globalization;
using Hexaly.Optimizer;
public class Portfolio : IDisposable
{
// Expected profit, in percentage of the portfolio
private float expectedProfit;
// Number of stocks
private int nbStocks;
// Covariance among the stocks
private float[][] sigmaStocks;
// Variation of the price of each stock
private float[] deltaStock;
// Hexaly Optimizer
private HexalyOptimizer optimizer;
// Proportion of the portfolio invested in each stock
private HxExpression[] portfolioStock;
// Return of the portfolio in percentage
private HxExpression profit;
public Portfolio()
{
optimizer = new HexalyOptimizer();
}
public void ReadInstance(string fileName)
{
using (StreamReader input = new StreamReader(fileName))
{
char[] separators = new char[] { '\t', ' ' };
string[] splitted = input
.ReadLine()
.Split(separators, StringSplitOptions.RemoveEmptyEntries);
expectedProfit = float.Parse(splitted[0], CultureInfo.InvariantCulture);
input.ReadLine();
splitted = input
.ReadLine()
.Split(separators, StringSplitOptions.RemoveEmptyEntries);
nbStocks = int.Parse(splitted[0]);
sigmaStocks = new float[nbStocks][];
input.ReadLine();
for (int s = 0; s < nbStocks; ++s)
{
sigmaStocks[s] = new float[nbStocks];
splitted = input
.ReadLine()
.Split(separators, StringSplitOptions.RemoveEmptyEntries);
for (int t = 0; t < nbStocks; ++t)
sigmaStocks[s][t] = float.Parse(splitted[t], CultureInfo.InvariantCulture);
}
input.ReadLine();
splitted = input
.ReadLine()
.Split(separators, StringSplitOptions.RemoveEmptyEntries);
deltaStock = new float[nbStocks];
for(int s = 0; s < nbStocks; ++s)
deltaStock[s] = float.Parse(splitted[s], CultureInfo.InvariantCulture);
}
}
public void Dispose()
{
optimizer.Dispose();
}
public void Solve(int timeLimit)
{
// Declare the optimization model
HxModel model = optimizer.GetModel();
// Proportion of the portfolio invested in each stock
portfolioStock = new HxExpression[nbStocks];
for(int s = 0; s < nbStocks; s++)
portfolioStock[s] = model.Float(0.0, 1.0);
// Risk of the portfolio
HxExpression risk = model.Sum();
for(int s = 0; s < nbStocks; s++)
{
for(int t = 0; t < nbStocks; t++)
risk.AddOperand(portfolioStock[s] * portfolioStock[t] * sigmaStocks[s][t]);
}
// Return of the portfolio in percentage
profit = model.Sum();
for(int s = 0; s < nbStocks; s++)
profit.AddOperand(portfolioStock[s] * deltaStock[s]);
// All the portfolio is used
model.Constraint(model.Sum(portfolioStock) == 1.0);
// The profit is at least the expected profit
model.Constraint(profit >= expectedProfit);
// Minimize the risk
model.Minimize(risk);
model.Close();
// Parameterize the optimizer
optimizer.GetParam().SetTimeLimit(timeLimit);
optimizer.Solve();
}
/* Write the solution in a file with the following format:
* - for each stock, the proportion of the porfolio invested
- the final profit in percentage of the portfolio */
public void WriteSolution(string fileName)
{
using (StreamWriter output = new StreamWriter(fileName))
{
Console.WriteLine("Solution written in file " + fileName);
for (int s = 1; s <= nbStocks; ++s)
{
double proportion = portfolioStock[s - 1].GetDoubleValue();
output.WriteLine("Stock " + s + ": " +
Math.Round(proportion * 100, 1) + "%");
}
output.WriteLine("Profit: " + Math.Round(profit.GetDoubleValue(), 4) + "%");
}
}
public static void Main(string[] args)
{
if (args.Length < 1)
{
Console.WriteLine("Usage: Portfolio instanceFile [outputFile] [timeLimit]");
System.Environment.Exit(1);
}
string instanceFile = args[0];
string outputFile = args.Length > 1 ? args[1] : null;
string strTimeLimit = args.Length > 2 ? args[2] : "60";
using (Portfolio model = new Portfolio())
{
model.ReadInstance(instanceFile);
model.Solve(int.Parse(strTimeLimit));
if (outputFile != null)
model.WriteSolution(outputFile);
}
}
}
- Compilation / Execution (Windows)
-
javac Portfolio.java -cp %HX_HOME%\bin\hexaly.jarjava -cp %HX_HOME%\bin\hexaly.jar;. Portfolio instances\small_01.txt
- Compilation / Execution (Linux)
-
javac Portfolio.java -cp /opt/hexaly_13_0/bin/hexaly.jarjava -cp /opt/hexaly_13_0/bin/hexaly.jar:. Portfolio instances/small_01.txt
import java.io.File;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Scanner;
import com.hexaly.optimizer.HxExpression;
import com.hexaly.optimizer.HxModel;
import com.hexaly.optimizer.HexalyOptimizer;
public class Portfolio {
// Expected profit, in percentage of the portfolio
private float expectedProfit;
// Number of stocks
private int nbStocks;
// Covariance among the stocks
private float[][] sigmaStocks;
// Variation of the price of each stock
private float[] deltaStock;
// Hexaly Optimizer
private final HexalyOptimizer optimizer;
// Proportion of the portfolio invested in each stock
private HxExpression[] portfolioStock;
// Return of the portfolio in percentage
private HxExpression profit;
public Portfolio(HexalyOptimizer optimizer) throws IOException {
this.optimizer = optimizer;
}
public void readInstance(String fileName) throws IOException {
try (Scanner input = new Scanner(new File(fileName))) {
expectedProfit = input.nextFloat();
nbStocks = input.nextInt();
sigmaStocks = new float[nbStocks][];
for (int s = 0; s < nbStocks; ++s) {
sigmaStocks[s] = new float[nbStocks];
for (int t = 0; t < nbStocks; ++t) {
sigmaStocks[s][t] = input.nextFloat();
}
}
deltaStock = new float[nbStocks];
for (int s = 0; s < nbStocks; ++s) {
deltaStock[s] = input.nextFloat();
}
}
}
public void solve(int timeLimit) {
// Declare the optimization model
HxModel model = optimizer.getModel();
// Proportion of the portfolio invested in each stock
portfolioStock = new HxExpression[nbStocks];
for (int s = 0; s < nbStocks; s++) {
portfolioStock[s] = model.floatVar(0.0, 1.0);
}
// Risk of the portfolio
HxExpression risk = model.sum();
for (int s = 0; s < nbStocks; s++) {
for (int t = 0; t < nbStocks; t++) {
HxExpression sigmaST = model.createConstant(sigmaStocks[s][t]);
risk.addOperand(model.prod(portfolioStock[s], portfolioStock[t], sigmaST));
}
}
// Return of the portfolio in percentage
profit = model.sum();
for (int s = 0; s < nbStocks; s++) {
HxExpression deltaS = model.createConstant(deltaStock[s]);
profit.addOperand(model.prod(portfolioStock[s], deltaS));
}
// All the portfolio is used
HxExpression one = model.createConstant(1.0);
model.constraint(model.eq(model.sum(portfolioStock), one));
// The profit is at least the expected profit
model.constraint(model.geq(profit, expectedProfit));
// Minimize the risk
model.minimize(risk);
model.close();
// Parameterize the optimizer
optimizer.getParam().setTimeLimit(timeLimit);
optimizer.solve();
}
/*
* Write the solution in a file with the following format:
* - for each stock, the proportion of the porfolio invested
* - the final profit in percentage of the portfolio
*/
public void writeSolution(String fileName) throws IOException {
try (PrintWriter output = new PrintWriter(fileName)) {
System.out.println("Solution written in file " + fileName);
for (int s = 1; s <= nbStocks; ++s) {
output.write("Stock " + s + ": " + portfolioStock[s - 1].getDoubleValue() * 100 + "% \n");
}
output.write("Profit: " + profit.getDoubleValue() + "% \n");
}
}
public static void main(String[] args) {
if (args.length < 1) {
System.out.println("Usage: java Portfolio instanceFile [outputFile] [timeLimit]");
System.exit(1);
}
String instanceFile = args[0];
String outputFile = args.length > 1 ? args[1] : null;
String strTimeLimit = args.length > 2 ? args[2] : "60";
try (HexalyOptimizer optimizer = new HexalyOptimizer()) {
Portfolio model = new Portfolio(optimizer);
model.readInstance(instanceFile);
model.solve(Integer.parseInt(strTimeLimit));
if (outputFile != null) {
model.writeSolution(outputFile);
}
} catch (Exception ex) {
System.err.println(ex);
ex.printStackTrace();
System.exit(1);
}
}
}