Bin Packing Problem (BPP)

Problem

In the Bin Packing Problem (BPP), a number of items with known weights must be assigned to bins with uniform capacity. Each item must be placed inside exactly one bin, and the total weight of items inside each bin must not exceed its capacity. The objective is to minimize the number of bins used.

Principles learned

Data

The instances provided are the Falkenauer instances from the BPPLIB. The format of the data files is as follows:

  • First line: number of items
  • Second line: bin capacity
  • For each item, its weight

Program

The Hexaly model for the Bin Packing Problem (BPP) uses set decision variables. For each bin, we define a set variable representing the set of items assigned to this bin. We constrain the set variables to form a partition, ensuring that each item belongs to exactly one bin.

We compute the total weight of a bin using a variadic ‘sum’ operator on the set and a lambda function returning the weight associated with any item index. Note that the number of terms in this sum varies during the search, along with the size of the set. We can then constrain the total weight to be lower than the bin capacity.

A bin is actually used if it contains at least one item. Thanks to the ‘count’ operator, which returns the number of elements in a set, we can check whether each bin is actually used and then compute the total number of bins used.

The model computes simple lower and upper bounds on the optimal number of bins. It only defines nbMaxBins set variables, and uses hxObjectiveThreshold to stop the search when a solution with nbMinBins bins has been reached.

Execution
hexaly bin_packing.hxm inFileName=instances/t60_00.txt [hxTimeLimit=] [solFileName=]
use io;

/* Read instance data */
function input() {
    local usage = "Usage: hexaly bin_packing.hxm "
            + "inFileName=inputFile [solFileName=outputFile] [hxTimeLimit=timeLimit]";

    if (inFileName == nil) throw usage;
    local inFile = io.openRead(inFileName);

    nbItems = inFile.readInt();
    binCapacity = inFile.readInt();
    itemWeights[i in 0...nbItems] = inFile.readInt();

    nbMinBins = ceil(sum[i in 0...nbItems](itemWeights[i]) / binCapacity);
    nbMaxBins = min(nbItems, 2 * nbMinBins);
}

/* Declare the optimization model */
function model() {
    // Set decisions: bins[k] represents the items in bin k
    bins[k in 0...nbMaxBins] <- set(nbItems);

    // Each item must be in one bin and one bin only
    constraint partition[k in 0...nbMaxBins](bins[k]);
    
    for [k in 0...nbMaxBins] {
        // Weight constraint for each bin
        binWeights[k] <- sum(bins[k], i => itemWeights[i]);
        constraint binWeights[k] <= binCapacity;
    
        // Bin k is used if at least one item is in it
        binsUsed[k] <- (count(bins[k]) > 0);
    }
    
    // Count the used bins
    totalBinsUsed <- sum[k in 0...nbMaxBins](binsUsed[k]);

    // Minimize the number of used bins
    minimize totalBinsUsed;
}

/* Parametrize the solver */
function param() {
    if (hxTimeLimit == nil) hxTimeLimit = 5;  

    // Stop the search if the lower threshold is reached
    lsObjectiveThreshold = nbMinBins;
}

/* Write the solution in a file */
function output() {
    if (solFileName == nil) return;
    local solFile = io.openWrite(solFileName);
    for [k in 0...nbMaxBins] {
        if (bins[k].value.count() == 0) continue;
        solFile.print("Bin weight: ", binWeights[k].value, " | Items: ");
        for [e in bins[k].value]
            solFile.print(e + " ");
        solFile.println();
    }
}

Execution (Windows)
set PYTHONPATH=%HX_HOME%\bin\python
python bin_packing.py instances\t60_00.txt
Execution (Linux)
export PYTHONPATH=/opt/hexaly_13_0/bin/python
python bin_packing.py instances/t60_00.txt
import hexaly.optimizer
import sys
import math

if len(sys.argv) < 2:
    print("Usage: python bin_packing.py inputFile [outputFile] [timeLimit]")
    sys.exit(1)


def read_integers(filename):
    with open(filename) as f:
        return [int(elem) for elem in f.read().split()]


with hexaly.optimizer.HexalyOptimizer() as optimizer:
    # Read instance data
    file_it = iter(read_integers(sys.argv[1]))

    nb_items = int(next(file_it))
    bin_capacity = int(next(file_it))

    weights_data = [int(next(file_it)) for i in range(nb_items)]
    nb_min_bins = int(math.ceil(sum(weights_data) / float(bin_capacity)))
    nb_max_bins = min(nb_items, 2 * nb_min_bins)

    #
    # Declare the optimization model
    #
    model = optimizer.model

    # Set decisions: bin[k] represents the items in bin k
    bins = [model.set(nb_items) for _ in range(nb_max_bins)]

    # Each item must be in one bin and one bin only
    model.constraint(model.partition(bins))

    # Create an array and a function to retrieve the item's weight
    weights = model.array(weights_data)
    weight_lambda = model.lambda_function(lambda i: weights[i])

    # Weight constraint for each bin
    bin_weights = [model.sum(b, weight_lambda) for b in bins]
    for w in bin_weights:
        model.constraint(w <= bin_capacity)

    # Bin k is used if at least one item is in it
    bins_used = [model.count(b) > 0 for b in bins]

    # Count the used bins
    total_bins_used = model.sum(bins_used)

    # Minimize the number of used bins
    model.minimize(total_bins_used)
    model.close()

    # Parameterize the optimizer
    if len(sys.argv) >= 4:
        optimizer.param.time_limit = int(sys.argv[3])
    else:
        optimizer.param.time_limit = 5

    # Stop the search if the lower threshold is reached
    optimizer.param.set_objective_threshold(0, nb_min_bins)

    optimizer.solve()

    # Write the solution in a file
    if len(sys.argv) >= 3:
        with open(sys.argv[2], 'w') as f:
            for k in range(nb_max_bins):
                if bins_used[k].value:
                    f.write("Bin weight: %d | Items: " % bin_weights[k].value)
                    for e in bins[k].value:
                        f.write("%d " % e)
                    f.write("\n")
Compilation / Execution (Windows)
cl /EHsc bin_packing.cpp -I%HX_HOME%\include /link %HX_HOME%\bin\hexaly130.lib
bin_packing instances\t60_00.txt
Compilation / Execution (Linux)
g++ bin_packing.cpp -I/opt/hexaly_13_0/include -lhexaly130 -lpthread -o bin_packing
./bin_packing instances/t60_00.txt
#include "optimizer/hexalyoptimizer.h"
#include <cmath>
#include <fstream>
#include <iostream>
#include <numeric>
#include <vector>

using namespace hexaly;
using namespace std;

class BinPacking {
private:
    // Number of items
    int nbItems;

    // Capacity of each bin
    int binCapacity;

    // Maximum number of bins
    int nbMaxBins;

    // Minimum number of bins
    int nbMinBins;

    // Weight of each item
    std::vector<hxint> weightsData;

    // Hexaly Optimizer
    HexalyOptimizer optimizer;

    // Decision variables
    std::vector<HxExpression> bins;

    // Weight of each bin in the solution
    std::vector<HxExpression> binWeights;

    // Whether the bin is used in the solution
    std::vector<HxExpression> binsUsed;

    // Objective
    HxExpression totalBinsUsed;

public:
    /* Read instance data */
    void readInstance(const string& fileName) {
        ifstream infile;
        infile.exceptions(ifstream::failbit | ifstream::badbit);
        infile.open(fileName.c_str());

        infile >> nbItems;
        infile >> binCapacity;

        weightsData.resize(nbItems);
        for (int i = 0; i < nbItems; ++i) {
            infile >> weightsData[i];
        }

        nbMinBins = ceil(accumulate(weightsData.begin(), weightsData.end(), 0.0) / binCapacity);
        nbMaxBins = min(2 * nbMinBins, nbItems);
    }

    void solve(int limit) {
        // Declare the optimization model
        HxModel model = optimizer.getModel();

        bins.resize(nbMaxBins);
        binWeights.resize(nbMaxBins);
        binsUsed.resize(nbMaxBins);

        // Set decisions: bins[k] represents the items in bin k
        for (int k = 0; k < nbMaxBins; ++k) {
            bins[k] = model.setVar(nbItems);
        }

        // Each item must be in one bin and one bin only
        model.constraint(model.partition(bins.begin(), bins.end()));

        // Create an array and a function to retrieve the item's weight
        HxExpression weights = model.array(weightsData.begin(), weightsData.end());
        HxExpression weightLambda = model.createLambdaFunction([&](HxExpression i) { return weights[i]; });

        for (int k = 0; k < nbMaxBins; ++k) {
            // Weight constraint for each bin
            binWeights[k] = model.sum(bins[k], weightLambda);
            model.constraint(binWeights[k] <= binCapacity);

            // Bin k is used if at least one item is in it
            binsUsed[k] = model.count(bins[k]) > 0;
        }

        // Count the used bins
        totalBinsUsed = model.sum(binsUsed.begin(), binsUsed.end());

        // Minimize the number of used bins
        model.minimize(totalBinsUsed);

        model.close();

        // Parametrize the optimizer
        optimizer.getParam().setTimeLimit(limit);

        // Stop the search if the lower threshold is reached
        optimizer.getParam().setObjectiveThreshold(0, (hxint)nbMinBins);

        optimizer.solve();
    }

    /* Write the solution in a file */
    void writeSolution(const string& fileName) {
        ofstream outfile;
        outfile.exceptions(ofstream::failbit | ofstream::badbit);
        outfile.open(fileName.c_str());
        for (int k = 0; k < nbMaxBins; ++k) {
            if (binsUsed[k].getValue()) {
                outfile << "Bin weight: " << binWeights[k].getValue() << " | Items: ";
                HxCollection binCollection = bins[k].getCollectionValue();
                for (int i = 0; i < binCollection.count(); ++i) {
                    outfile << binCollection[i] << " ";
                }
                outfile << endl;
            }
        }
    }
};

int main(int argc, char** argv) {
    if (argc < 2) {
        cerr << "Usage: bin_packing inputFile [outputFile] [timeLimit]" << endl;
        return 1;
    }

    const char* instanceFile = argv[1];
    const char* solFile = argc > 2 ? argv[2] : NULL;
    const char* strTimeLimit = argc > 3 ? argv[3] : "5";

    try {
        BinPacking model;
        model.readInstance(instanceFile);
        model.solve(atoi(strTimeLimit));
        if (solFile != NULL)
            model.writeSolution(solFile);
        return 0;
    } catch (const exception& e) {
        cerr << "An error occurred: " << e.what() << endl;
        return 1;
    }
}
Compilation / Execution (Windows)
copy %HX_HOME%\bin\Hexaly.NET.dll .
csc BinPacking.cs /reference:Hexaly.NET.dll
BinPacking instances\t60_00.txt
using System;
using System.IO;
using System.Linq;
using Hexaly.Optimizer;

public class BinPacking : IDisposable
{
    // Number of items
    int nbItems;

    // Capacity of each bin
    int binCapacity;

    // Maximum number of bins
    int nbMaxBins;

    // Minimum number of bins
    int nbMinBins;

    // Weight of each item
    long[] weightsData;

    // Hexaly Optimizer
    HexalyOptimizer optimizer;

    // Decision variables
    HxExpression[] bins;

    // Weight of each bin in the solution
    HxExpression[] binWeights;

    // Whether the bin is used in the solution
    HxExpression[] binsUsed;

    // Objective
    HxExpression totalBinsUsed;

    public BinPacking()
    {
        optimizer = new HexalyOptimizer();
    }

    /* Read instance data */
    void ReadInstance(string fileName)
    {
        using (StreamReader input = new StreamReader(fileName))
        {
            nbItems = int.Parse(input.ReadLine());
            binCapacity = int.Parse(input.ReadLine());

            weightsData = new long[nbItems];
            for (int i = 0; i < nbItems; ++i)
                weightsData[i] = int.Parse(input.ReadLine());

            nbMinBins = (int)Math.Ceiling((double)weightsData.Sum() / binCapacity);
            nbMaxBins = Math.Min(2 * nbMinBins, nbItems);
        }
    }

    public void Dispose()
    {
        if (optimizer != null)
            optimizer.Dispose();
    }

    void Solve(int limit)
    {
        // Declare the optimization model
        HxModel model = optimizer.GetModel();

        bins = new HxExpression[nbMaxBins];
        binWeights = new HxExpression[nbMaxBins];
        binsUsed = new HxExpression[nbMaxBins];

        // Set decisions: bin[k] represents the items in bin k
        for (int k = 0; k < nbMaxBins; ++k)
            bins[k] = model.Set(nbItems);

        // Each item must be in one bin and one bin only
        model.Constraint(model.Partition(bins));

        // Create an array and a function to retrieve the item's weight
        HxExpression weights = model.Array(weightsData);
        HxExpression weightLambda = model.LambdaFunction(i => weights[i]);

        for (int k = 0; k < nbMaxBins; ++k)
        {
            // Weight constraint for each bin
            binWeights[k] = model.Sum(bins[k], weightLambda);
            model.Constraint(binWeights[k] <= binCapacity);

            // Bin k is used if at least one item is in it
            binsUsed[k] = model.Count(bins[k]) > 0;
        }

        // Count the used bins
        totalBinsUsed = model.Sum(binsUsed);

        // Minimize the number of used bins
        model.Minimize(totalBinsUsed);

        model.Close();

        // Parametrize the optimizer
        optimizer.GetParam().SetTimeLimit(limit);

        // Stop the search if the lower threshold is reached
        optimizer.GetParam().SetObjectiveThreshold(0, nbMinBins);

        optimizer.Solve();
    }

    /* Write the solution in a file */
    void WriteSolution(string fileName)
    {
        using (StreamWriter output = new StreamWriter(fileName))
        {
            for (int k = 0; k < nbMaxBins; ++k)
            {
                if (binsUsed[k].GetValue() != 0)
                {
                    output.Write("Bin weight: " + binWeights[k].GetValue() + " | Items: ");
                    HxCollection binCollection = bins[k].GetCollectionValue();
                    for (int i = 0; i < binCollection.Count(); ++i)
                        output.Write(binCollection[i] + " ");
                    output.WriteLine();
                }
            }
        }
    }

    public static void Main(string[] args)
    {
        if (args.Length < 1)
        {
            Console.WriteLine("Usage: BinPacking inputFile [solFile] [timeLimit]");
            Environment.Exit(1);
        }
        string instanceFile = args[0];
        string outputFile = args.Length > 1 ? args[1] : null;
        string strTimeLimit = args.Length > 2 ? args[2] : "5";

        using (BinPacking model = new BinPacking())
        {
            model.ReadInstance(instanceFile);
            model.Solve(int.Parse(strTimeLimit));
            if (outputFile != null)
                model.WriteSolution(outputFile);
        }
    }
}
Compilation / Execution (Windows)
javac BinPacking.java -cp %HX_HOME%\bin\hexaly.jar
java -cp %HX_HOME%\bin\hexaly.jar;. BinPacking instances\t60_00.txt
Compilation / Execution (Linux)
javac BinPacking.java -cp /opt/hexaly_13_0/bin/hexaly.jar
java -cp /opt/hexaly_13_0/bin/hexaly.jar:. BinPacking instances/t60_00.txt
import java.util.*;
import java.io.*;
import com.hexaly.optimizer.*;

public class BinPacking {
    // Number of items
    private int nbItems;

    // Capacity of each bin
    private int binCapacity;

    // Maximum number of bins
    private int nbMaxBins;

    // Minimum number of bins
    private int nbMinBins;

    // Weight of each item
    private long[] weightsData;

    // Hexaly Optimizer
    private final HexalyOptimizer optimizer;

    // Decision variables
    private HxExpression[] bins;

    // Weight of each bin in the solution
    private HxExpression[] binWeights;

    // Whether the bin is used in the solution
    private HxExpression[] binsUsed;

    // Objective
    private HxExpression totalBinsUsed;

    private BinPacking(HexalyOptimizer optimizer) {
        this.optimizer = optimizer;
    }

    /* Read instance data */
    private void readInstance(String fileName) throws IOException {
        try (Scanner input = new Scanner(new File(fileName))) {
            nbItems = input.nextInt();
            binCapacity = input.nextInt();

            weightsData = new long[nbItems];
            for (int i = 0; i < nbItems; ++i) {
                weightsData[i] = input.nextInt();
            }

            long sumWeights = 0;
            for (int i = 0; i < nbItems; ++i) {
                sumWeights += weightsData[i];
            }

            nbMinBins = (int) Math.ceil((double) sumWeights / binCapacity);
            nbMaxBins = Math.min(2 * nbMinBins, nbItems);
        }
    }

    private void solve(int limit) {
        // Declare the optimization model
        HxModel model = optimizer.getModel();

        bins = new HxExpression[nbMaxBins];
        binWeights = new HxExpression[nbMaxBins];
        binsUsed = new HxExpression[nbMaxBins];

        // Set decisions: bins[k] represents the items in bin k
        for (int k = 0; k < nbMaxBins; ++k) {
            bins[k] = model.setVar(nbItems);
        }

        // Each item must be in one bin and one bin only
        model.constraint(model.partition(bins));

        // Create an array and a lambda function to retrieve the item's weight
        HxExpression weights = model.array(weightsData);
        HxExpression weightLambda = model.lambdaFunction(i -> model.at(weights, i));

        for (int k = 0; k < nbMaxBins; ++k) {
            // Weight constraint for each bin
            binWeights[k] = model.sum(bins[k], weightLambda);
            model.constraint(model.leq(binWeights[k], binCapacity));

            // Bin k is used if at least one item is in it
            binsUsed[k] = model.gt(model.count(bins[k]), 0);
        }

        // Count the used bins
        totalBinsUsed = model.sum(binsUsed);

        // Minimize the number of used bins
        model.minimize(totalBinsUsed);
        model.close();

        // Parametrize the optimizer
        optimizer.getParam().setTimeLimit(limit);

        // Stop the search if the lower threshold is reached
        optimizer.getParam().setObjectiveThreshold(0, nbMinBins);

        optimizer.solve();
    }

    /* Write the solution in a file */
    private void writeSolution(String fileName) throws IOException {
        try (PrintWriter output = new PrintWriter(fileName)) {
            for (int k = 0; k < nbMaxBins; ++k) {
                if (binsUsed[k].getValue() != 0) {
                    output.print("Bin weight: " + binWeights[k].getValue() + " | Items: ");
                    HxCollection binCollection = bins[k].getCollectionValue();
                    for (int i = 0; i < binCollection.count(); ++i) {
                        output.print(binCollection.get(i) + " ");
                    }
                    output.println();
                }
            }
        }
    }

    public static void main(String[] args) {
        if (args.length < 1) {
            System.err.println("Usage: java BinPacking inputFile [outputFile] [timeLimit]");
            System.exit(1);
        }

        String instanceFile = args[0];
        String outputFile = args.length > 1 ? args[1] : null;
        String strTimeLimit = args.length > 2 ? args[2] : "5";

        try (HexalyOptimizer optimizer = new HexalyOptimizer()) {
            BinPacking model = new BinPacking(optimizer);
            model.readInstance(instanceFile);
            model.solve(Integer.parseInt(strTimeLimit));
            if (outputFile != null) {
                model.writeSolution(outputFile);
            }
        } catch (Exception ex) {
            System.err.println(ex);
            ex.printStackTrace();
            System.exit(1);
        }
    }
}

Results

Hexaly Optimizer reaches an average gap of 0.2% on the Bin Packing Problem (BPP) in 1 minute of running time, on the instances from the BPPLIB research benchmark, with up to 5,500 items to pack. Our Bin Packing (BPP) benchmark page illustrates how Hexaly Optimizer outperforms traditional general-purpose optimization solvers like Gurobi on this fundamental but challenging problem.

Similar examples

Discover the ease of use and performance of Hexaly